Scienza

Misurare l'Universo con la fisica quantistica

Misurare l'Universo con la fisica quantistica

Uno studio teorico apre nuove prospettive per la messa a punto di dispositivi in grado di misurare l'Universo mediante la fisica quantistica, come gli interferometri capaci di rilevare fluttuazioni dello spazio-tempo legate a onde gravitazionali in arrivo.

Pubblicato sulla rivista della American Physical Society uno studio teorico tutto italiano che apre nuove prospettive per la messa a punto di dispositivi in grado di misurare l'Universo, come gli interferometri capaci di rilevare fluttuazioni dello spazio-tempo legate a onde gravitazionali in arrivo. Ne sono autori Marilù Chiofalo, professoressa di Fisica della materia all'Università di Pisa, e il suo dottorando Leonardo Lucchesi, che ne ha fatto l'oggetto della sua tesi di laurea magistrale. Lo studio uscito sulla “Physical Review Letters” si intitola "Many-Body Entanglement in Short-Range Interacting Fermi Gases for Metrology". (1)

Al centro della ricerca “made in Pisa” ci sono i fermioni, le particelle quantistiche così chiamate in onore di Enrico Fermi. Come tutte le particelle quantistiche, a ogni fermione è associata un'onda di probabilità di essere in un certo spazio ad un dato tempo, e due di loro possono essere preparati in modo da continuare a condividere determinate caratteristiche anche se allontanati a grande distanza, come se le loro onde di probabilità fossero irrimediabilmente aggrovigliate tra loro, una proprietà che viene chiamata entanglement: è come se, lanciando due dadi, l'uscita di un numero sul primo dado garantisca l'uscita dello stesso numero sull'altro.

Nello studio, questo concetto è esteso ad un insieme di moltissimi atomi di natura fermionica: “Usando la duplice natura delle correlazioni tra atomi - spiega Marilù Chiofalo- legata alle caratteristiche quantistiche e alle forze con cui interagiscono tra loro, è come se le onde di probabilità dei molti atomi entangled formassero un ciuffo di capelli non pettinato per anni.

Bioprinting di tessuti viventi complessi in pochi secondi

Bioprinting di tessuti viventi complessi in pochi secondi

Il bioprinting volumetrico consente in solo pochi secondi di scolpire forme complesse di tessuto in un idrogel biocompatibile contenente cellule staminali.

Gli ingegneri dei tessuti creano organi e tessuti artificiali che possono essere utilizzati per sviluppare e testare nuovi farmaci, riparare i tessuti danneggiati e persino sostituire interi organi del corpo umano. Tuttavia, gli attuali metodi di fabbricazione limitano la loro capacità di produrre forme a forma libera e raggiungere un'elevata vitalità cellulare.

I ricercatori del Laboratory of Applied Photonics Devices (LAPD), della School of Engineering dell'EPFL (Ecole Polytechnique Fédérale de Lausanne), in collaborazione con i colleghi dell'Università di Utrecht, hanno messo a punto una tecnica ottica che richiede solo pochi secondi per scolpire forme complesse di tessuto in un idrogel biocompatibile contenente cellule staminali. Il tessuto risultante può quindi essere vascolarizzato aggiungendo cellule endoteliali.

Il team descrive questo metodo di stampa ad alta risoluzione in un articolo che appare in Advanced Materials. (1) La tecnica cambierà il modo in cui lavorano gli specialisti dell'ingegneria cellulare, consentendo loro di creare una nuova generazione di organi bioprintati personalizzati e funzionali.

Prevenire la malattia di Alzheimer in laboratorio

Prevenire la malattia di Alzheimer in laboratorio

Identificato il legame tra le cellule immunitarie cerebrali e lo sviluppo della malattia di Alzheimer. Uno studio della University of California, Irvine rileva l'assenza di microglia che previene la formazione di placche.

Gli scienziati dell'Università della California, Irvine School of Biological Sciences hanno scoperto come prevenire la malattia di Alzheimer in un ambiente di laboratorio, una scoperta che un giorno potrebbe aiutare a ideare farmaci mirati per prevenire la patologia neurologica.

I ricercatori hanno scoperto che rimuovendo le cellule immunitarie cerebrali, conosciute come microglia, dai modelli di roditori della malattia di Alzheimer, le placche beta-amiloidi - la patologia caratteristica dell'AD - non si sono mai formate. Il loro studio è stato divulgato sulla rivista Nature Communications. (1)

Ricerche precedenti hanno dimostrato che la maggior parte dei geni a rischio di Alzheimer sono attivi nella microglia, suggerendo che queste cellule svolgono un ruolo nella malattia. “Siccome non avevamo capito esattamente le dinamiche delle microglia e se sono significative nel processo iniziale dell'Alzheimer abbiamo deciso di esaminare questo problema osservando cosa sarebbe successo in loro assenza.”, ha dichiarato il dottor Kim Green, (2) professore associato di neurobiologia e comportamento.

I ricercatori hanno utilizzato un farmaco che blocca la segnalazione della microglia necessaria per la loro sopravvivenza. Il professor Kim Green e il team del suo laboratorio, hanno precedentemente dimostrato che il blocco di questa segnalazione elimina efficacemente queste cellule immunitarie dal cervello.

Pagine