CNR

Nel Mar Tirreno sono stati scoperti sette nuovi vulcani

Nel Mar Tirreno sono stati scoperti sette nuovi vulcaniScoperti nel Mar Tirreno 7 nuovi vulcani sommersi che, insieme a quelli già noti, formano una catena lunga 90 km. Ad arrivare a queste conclusioni, uno studio a firma Ingv, Istituto per l’ambiente marino costiero del Cnr e Geological and Nuclear Sciences (Nuova Zelanda), pubblicato su Nature Communications

Il Mar Tirreno meridionale svela una nuova catena di 15 vulcani sommersi, di cui 7 fino a ora sconosciuti, una struttura lineare, in direzione Est-Ovest, che misura circa 90 km in lunghezza e 20 km in larghezza. A dirlo uno studio, frutto del risultato di numerose campagne oceanografiche condotte negli ultimi anni da un team internazionale di vulcanologi, geofisici, e geologi marini dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV e IAMC), dell’Istituto per l’Ambiente Marino Costiero del Consiglio Nazionale delle Ricerche (IAMC-CNR) e del Geological and Nuclear Sciences (GNS), Nuova Zelanda. Il lavoro ‘Volcanism in slab tear faults is larger than that in island-arcs and back-arcs’, pubblicato su Nature Communications, impatta sulle conoscenze del Mar Tirreno e apre nuove strade alla interpretazione del vulcanismo in zone di subduzione nel mondo.

Il Nanotec-Cnr ha dimostrato la mutazione della luce in un superfluido

Il Nanotec-Cnr ha dimostrato la mutazione della luce in un superfluidoLa luce, a certe condizioni, può trasformarsi in un superfluido e scorrere intorno ad un difetto senza attrito, richiudendosi su se stessa senza increspature. Lo ha dimostrato il Nanotec-Cnr in un recente studio pubblicato sulla rivista Nature Physics

Che la luce sia composta di onde è noto. Ma che i fotoni possano comportarsi come un vero e proprio liquido che forma increspature intorno a un ostacolo, come la corrente di un fiume, lo è meno. Che lo possa fare in condizioni date di temperatura e pressione ambientali è la scoperta dei ricercatori dell’Istituto di nanotecnologia del Consiglio nazionale delle ricerche (Nanotec-Cnr) di Lecce: la luce quando è ‘vestita di elettroni’ può diventare addirittura un superfluido e scorrere intorno a un ‘difetto’ senza attrito, richiudendosi su se stessa senza increspature.

I risultati sono stati pubblicati su Nature Physics e sono frutto del lavoro sperimentale effettuato presso i laboratori di Fotonica avanzata del Nanotec-Cnr di Lecce, in collaborazione con il Dipartimento di matematica e fisica ‘Ennio De Giorgi’ dell'Università del Salento, il Polytechnique di Montrèal in Canada, il Centre of Excellence della Aalto University in Finlandia e l'Imperial College di Londra.

Misurato il moto disordinato degli elettroni ‘liberi’ nella materia

Misurato il moto disordinato degli elettroni ‘liberi’ nella materiaPresso l’Istituto di fotonica e nanotecnologie (Ifn) del Cnr di Milano un gruppo di ricerca internazionale è riuscito per la prima volta a misurare il moto disordinato degli elettroni all’interno di un materiale isolante. Lo studio, pubblicato su Nature Physics, potrebbe avere importanti ricadute in ambito radioterapico

Presso l’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Ifn-Cnr) di Milano un gruppo internazionale di ricercatori è riuscito per la prima volta a misurare in tempo reale il moto disordinato degli elettroni ‘liberi’ che si genera all’interno di un materiale isolante (dielettrico) a seguito dell’interazione con fotoni ad alta energia. Lo studio, pubblicato su ‘Nature Physics’ apre importanti prospettive in ambito medico, in particolare per la possibilità di migliorare le tecniche di radioterapia.

Il lavoro è stato condotto in collaborazione con ricercatori dell’Ifn-Cnr di Padova, del Politecnico di Milano, del Center for Free-Electron Laser Science (Cfel-Desy) di Amburgo, della Ludwig-Maximilians-Universität e del Max Planck Institute of Quantum Optics (Mpq) di Monaco di Baviera e dell’Università di Rostock.

La tecnica si realizza sulla scala temporale degli ‘attosecondi’ (un attosecondo è pari a un miliardesimo di miliardesimo di secondo): nello studio, infatti, impulsi di luce nell’estremo ultravioletto della durata di poche centinaia di attosecondi sono stati utilizzati per ionizzare nanoparticelle di vetro e ‘attivare’ la dinamica ultraveloce degli elettroni.

Pagine