Materiali

Sviluppato un anodo per batterie di prossima generazione

Sviluppato un anodo per batterie di prossima generazione

I ricercatori di Carnegie Mellon hanno sviluppato un anodo di metallo semi-liquido per batterie di prossima generazione. Il nuovo anodo potrebbe contribuire a creare una batteria al litio in metallo ad alta energia più sicura.

I ricercatori del Mellon College of Science e del College of Engineering della Carnegie Mellon University hanno sviluppato un anodo semiliquido basato su metallo che rappresenta un nuovo paradigma nella progettazione delle batterie. Le batterie al litio prodotte con questo nuovo tipo di elettrodo potrebbero avere una capacità maggiore ed essere molto più sicure rispetto alle batterie a base di litio concepite sul metallo che utilizzano come anodo la lamina di litio.

Il team di ricerca interdisciplinare ha pubblicato le sue scoperte nell'attuale numero di Joule. (1)

Le batterie a base di litio sono uno dei tipi più comuni di batterie ricaricabili utilizzate nell'elettronica moderna a causa della loro capacità di immagazzinare grandi quantità di energia. Tradizionalmente, queste batterie sono fatte di elettroliti liquidi combustibili e due elettrodi, un anodo e un catodo, che sono separati da una membrana. Dopo che una batteria è stata caricata e scaricata ripetutamente, fili di litio chiamati dendriti possono crescere sulla superficie dell'elettrodo. I dendriti possono penetrare attraverso la membrana che separa i due elettrodi. Ciò consente il contatto tra l'anodo e il catodo che può causare il cortocircuito della batteria e, nel peggiore dei casi, prendere fuoco.

Il dottor Krzysztof Matyjaszewski, (2) J.C. Warner University Professor of Natural Sciences nel Dipartimento di Chimica di Carnegie Mellon, spiega: "incorporare un anodo di litio metallico nelle batterie agli ioni di litio ha il potenziale teorico di creare una batteria con una capacità molto maggiore di una batteria con un anodo di grafite, ma la cosa più importante che dobbiamo fare è assicurarci che la batteria che creiamo sia sicura."

In futuro dispositivi di archiviazione dati più potenti

In futuro dispositivi di archiviazione dati più potenti

La scoperta può portare a nuovi materiali per la memorizzazione dei dati in dispositivi di prossima generazione. La ricerca, finanziata dall'esercito USA, dimostra, per la prima volta, la chiralità emergente negli skirmioni polari nei superlattici di ossido

La ricerca, pubblicata sulla rivista Nature, (1) finanziata in parte dall'esercito statunitense, ha identificato proprietà in materiali che un giorno potrebbero portare a applicazioni come dispositivi di archiviazione dati più potenti che continuano a contenere informazioni anche dopo che un dispositivo è stato spento.

Un team di ricercatori guidati dalla Cornell University e dall'University of California Berkeley ha fatto una scoperta che apre una miriade di nuove possibilità esplorative di sistemi, materiali e fenomeni fisici.

Gli scienziati hanno osservato per la prima volta la cosiddetta chiralità in skyrmioni (2) polari in un materiale artificiale squisitamente progettato e sintetizzato con proprietà elettriche reversibili. La chiralità è il processo in cui due oggetti, come un paio di guanti, possono essere immagini speculari l'uno dell'altro ma non possono essere sovrapposti l'uno sull'altro. Gli skyrmioni polari sono trame costituite da cariche elettriche opposte note come dipoli. (3)

Gli scienziati hanno sempre dato per scontato che gli skyrmioni potevano comparire solo in materiali magnetici, dove interazioni speciali tra gli spin magnetici degli elettroni carichi stabilizzano i modelli chirali dei contorti degli skyrmioni. E stata una grande sorpresa per i ricercatori identificare gli skyrmioni in un materiale elettrico.

La combinazione di skyrmioni polari e di queste proprietà elettriche può consentire lo sviluppo di nuovi dispositivi che sono di interesse significativo per l'esercito degli Stati Uniti, specialmente usando la chiralità come parametro manipolabile.

Modello di materia soffice ad anelli elastici

Anelli elastici con taglia variabile da centinaia di nanometri a qualche micron come nuovo modello di materia soffice

Un team di ricerca del Cnr-Isc ha dimostrato, grazie a un modello numerico di materia composta da anelli elastici, come la risposta dinamica del sistema sia influenzata dall'abilità di deformarsi propria di questi colloidi soffici.

I colloidi sono particelle con taglia variabile da centinaia di nanometri a qualche micron e possono essere naturali o artificiali. L'avanzamento tecnologico degli ultimi 20 anni ha permesso di sintetizzare diverse varietà di queste particelle dalle molteplici proprietà, tra cui i cosiddetti colloidi 'soffici', fatti principalmente da materiale polimerico, ovvero catene flessibili che danno alle particelle la possibilità di deformarsi e di interpenetrarsi (pensate a delle reti estremamente morbide e intrecciate fra loro).

I collodi soffici presentano molteplici applicazioni ad esempio nella biomedicina, microfluidica e sensoristica ed è dunque importante comprendere come le proprietà di un singolo colloide influenzino il comportamento del materiale che essi formano.

In un recente studio numerico pubblicato su Nature Physics, (1) il team dell'Istituto dei sistemi complessi del Consiglio nazionale delle ricerche (Cnr-Isc), composto da Nicoletta Gnan e Emanuela Zaccarelli, ha mostrato che un modello numerico di particelle soffici con un'elasticità interna è in grado di riprodurre meccanismi osservati sperimentalmente, ma finora incompresi a livello microscopico.

“Ispirate dalla natura polimerica di questi colloidi, abbiamo deciso di lavorare in due dimensioni e di considerare dei semplici anelli polimerici elastici”, spiega Nicoletta Gnan. “Questi sono assimilabili a dei cerchietti la cui forma circolare viene mantenuta per via delle interazioni elastiche interne, che riescono quindi a mimare l'effetto di una rete polimerica. Più è forte l'interazione elastica, più gli anelli polimerici diventano duri, viceversa quanto meno forti sono le interazioni elastiche, quanto più soffici sono gli anelli. Questo permette loro di deformarsi e in questo modo di immagazzinare spontaneamente energia elastica (stress) che poi rilasciano quando riescono a tornare in forma circolare”.

Pagine