Genetica

Studio sulle aritmie con cardiomiopatia ereditaria

Studio sulle aritmie con cardiomiopatia ereditaria

Identificato il meccanismo alla base delle aritmie nei pazienti con cardiomiopatia da mutazioni della lamina.

Uno studio del Cnr-Irgb e Humanitas identifica un nuovo meccanismo di malattia in modelli in vitro di cardiomiopatia ereditaria lamina-dipendente. La ricerca è stata pubblicata sulla rivista Nature Communications. (1)

Le mutazioni del gene della Lamina A/C, una proteina fondamentale dell'involucro nucleare della cellula, sono causa di cardiomiopatia, malattia del muscolo cardiaco associata a dilatazione del cuore e alterata funzionalità, e sono associate a disturbi della conduzione, aritmia e morte improvvisa.

“Nel nostro studio abbiamo utilizzato modelli cardiaci 'in vitro', generati mediante un processo di 'riprogrammazione' di cellule della pelle di pazienti portatori della mutazione K219T in cellule iPSC (dall'inglese Induced Pluripotent Stem Cells – cellule staminali pluripotenti indotte), ed il loro successivo differenziamento in cardiomiociti, le cellule del cuore alla base della proprietà contrattile del muscolo cardiaco”, spiega Elisa Di Pasquale, ricercatrice dell'Istituto di ricerca genetica e biomedica del Consiglio nazionale delle ricerche (Cnr-Irgb) e Humanitas. “Le cellule iPSC, descritte per la prima volta nel 2006 dal premio Nobel Shinya Yamanaka, hanno rivoluzionato l'approccio allo studio delle malattie e ci hanno permesso di investigare i meccanismi funzionali e molecolari alla base della cardiomiopatia lamina-dipendente”.

Creato schema elettrico del sistema nervoso di un animale

Creato schema elettrico del sistema nervoso di un animale

I ricercatori del College of Medicine Albert Einstein descrivono il primo schema elettrico completo del sistema nervoso di un animale, il verme Caenorhabditis elegans, usato dagli scienziati di tutto il mondo come un organismo modello. Lo studio comprende adulti di entrambi i sessi e rivela differenze sostanziali tra loro.

I risultati segnano un'importante pietra miliare nel campo della Connectomics, (1) lo sforzo di mappare le innumerevoli connessioni neurali in un cervello, nella regione dell'encefalo o nel sistema nervoso per trovare le specifiche connessioni nervose responsabili di determinati comportamenti.

Il dottor Scott W. Emmons, Ph.D., (2) leader dello studio, professore di genetica presso il Dominick P. Purpura Department of Neuroscience e la Siegfried Ullmann Chair in Molecular Genetics at Einstein, spiega: “la struttura è sempre centrale in biologia. La configurazione del DNA ha rivelato come funzionano i geni mentre la struttura delle proteine ha rivelato come funzionano gli enzimi. Ora, la struttura del sistema nervoso sta rivelando: come si comportano gli animali; come le connessioni neurali, quando sono alterate, possono causare una malattia.”

Nuova tecnica di imaging per studiare le cellule T

Nuova tecnica di imaging per studiare le cellule T

Grazie a una nuova tecnica di imaging sono state immortalato in un video l'addestramento delle cellule T prima che attuino la neutralizzazione di batteri e virus.

Per la prima volta, gli immunologi dell'università del Texas ad Austin hanno immortalato in un video ciò che accade quando le cellule T - responsabili della neutralizzazione di batteri e virus - si sottopongono a un tipo di programma di addestramento prima di attuare l'attacco a virus e batteri nel corpo. Una nuova tecnica di imaging che fa ben sperare gli scienziati per la lotta contro le patologie autoimmuni come il diabete di tipo 1.

Una delle più potenti armi del corpo umano contro molte malattie sono le cellule T, ma nelle persone con disturbi autoimmuni queste cellule distruggono anche le cellule normali che vengono scambiate per degli invasori. Questa disfunzione causa un attacco di parti del corpo in buona salute.

La professoressa Lauren I Ehrlich, (1) uno degli autori dello studio spiega: “Le cellule T hanno l'arduo compito di riconoscere e combattere tutti i diversi patogeni che incontriamo nel corso della nostra vita, evitando di attaccare il nostro stesso tessuto sano. Queste cellule maturano nel timo, un organo appena sopra il cuore, dove vengono come educate a non attaccare il corpo.”

La ricercatrice Lauren I Ehrlich e la postdottorato Jessica Lancaster hanno immortalato in un video (2) questo processo educativo in un timo (3) di topo. Esse hanno utilizzato un paio di potenti laser che sparano a brevi impulsi e scorrono attraverso una parte di tessuto vivo ogni 15 secondi per ricostruire le posizioni, i movimenti e la segnalazione intracellulare delle cellule. Le due ricercatrici hanno osservato che, mentre le cellule T si sviluppano, altre cellule nel timo le aiutano a incontrare tutti i tipi di proteine umane ordinarie che, in seguito, le cellule T dovranno ignorare per evitare di attaccare altre parti del corpo. Le due studiose hanno appreso nuove conoscenze su come diversi tipi di cellule lavorano insieme nel timo per eseguire i test di sicurezza e, nel caso in cui una cellula T fallisca, attivano l'autodistruzione.

Pagine