Scienza

Le dinamiche che regolano il carbonio organico

Le dinamiche che regolano il carbonio organico

Un nuovo studio condotto dai ricercatori del Woods Hole Oceanographic Institution (WHOI) e dell'Università di Harvard può aiutare a risolvere una questione di vecchia data: come mai piccole quantità di carbonio organico si bloccano nella roccia e nei sedimenti, impedendo di decomporsi.

Secondo il dottor Jordon Hemingway, (1) autore principale dello studio (pubblica dalla rivista Nature) (2), ricercatore postdottorato a Harvard e ex studente dell'OMI, conoscere le dinamiche che regolano questo processo potrebbe aiutare a spiegare perché la miscela di gas nell'atmosfera è rimasta stabile per così tanto tempo.

Secondo il dottor Jordon Hemingway, il biossido di carbonio atmosferico è una forma inorganica di carbonio. Le piante, le alghe e alcuni tipi di batteri possono estrarre la CO2 dall'aria e utilizzarla come elemento di base per zuccheri, proteine e altre molecole nel loro corpo. Il processo, che avviene durante la fotosintesi, trasforma il carbonio inorganico in una forma “organica”, rilasciando ossigeno nell'atmosfera. Il contrario avviene quando questi organismi muoiono: i microbi iniziano a decomporsi, consumando ossigeno e rilasciando CO2 nell'aria. Uno dei motivi chiave per cui la Terra è rimasta abitabile è che questo ciclo chimico è leggermente sbilanciato. Per qualche ragione, una piccola percentuale di carbonio organico non viene scomposta dai microbi, ma rimane conservata sottoterra per milioni di anni.

Sulla base delle prove esistenti, i ricercatori hanno sviluppato due possibili ragioni per cui il carbonio è lasciato alle spalle;

Sviluppato un anodo per batterie di prossima generazione

Sviluppato un anodo per batterie di prossima generazione

I ricercatori di Carnegie Mellon hanno sviluppato un anodo di metallo semi-liquido per batterie di prossima generazione. Il nuovo anodo potrebbe contribuire a creare una batteria al litio in metallo ad alta energia più sicura.

I ricercatori del Mellon College of Science e del College of Engineering della Carnegie Mellon University hanno sviluppato un anodo semiliquido basato su metallo che rappresenta un nuovo paradigma nella progettazione delle batterie. Le batterie al litio prodotte con questo nuovo tipo di elettrodo potrebbero avere una capacità maggiore ed essere molto più sicure rispetto alle batterie a base di litio concepite sul metallo che utilizzano come anodo la lamina di litio.

Il team di ricerca interdisciplinare ha pubblicato le sue scoperte nell'attuale numero di Joule. (1)

Le batterie a base di litio sono uno dei tipi più comuni di batterie ricaricabili utilizzate nell'elettronica moderna a causa della loro capacità di immagazzinare grandi quantità di energia. Tradizionalmente, queste batterie sono fatte di elettroliti liquidi combustibili e due elettrodi, un anodo e un catodo, che sono separati da una membrana. Dopo che una batteria è stata caricata e scaricata ripetutamente, fili di litio chiamati dendriti possono crescere sulla superficie dell'elettrodo. I dendriti possono penetrare attraverso la membrana che separa i due elettrodi. Ciò consente il contatto tra l'anodo e il catodo che può causare il cortocircuito della batteria e, nel peggiore dei casi, prendere fuoco.

Il dottor Krzysztof Matyjaszewski, (2) J.C. Warner University Professor of Natural Sciences nel Dipartimento di Chimica di Carnegie Mellon, spiega: "incorporare un anodo di litio metallico nelle batterie agli ioni di litio ha il potenziale teorico di creare una batteria con una capacità molto maggiore di una batteria con un anodo di grafite, ma la cosa più importante che dobbiamo fare è assicurarci che la batteria che creiamo sia sicura."

Gli esperimenti rivelano la fisica dell'evaporazione

Gli esperimenti rivelano la fisica dell'evaporazione

Durante il processo della fisica dell'evaporazione i cambiamenti di pressione, più della temperatura, influenzano fortemente la velocità con cui i liquidi si trasformano in gas.

È un processo così fondamentale per la vita di tutti i giorni - in ogni cosa, dalla tua caffettiera mattutina alla grande centrale elettrica - che spesso è dato per scontato: il modo in cui un liquido si allontana da una superficie calda.

Eppure sorprendentemente, questo processo di base è stato solo ora, per la prima volta, analizzato in dettaglio a livello molecolare, in una nuova analisi del dottor Zhengmao Lu, (1) del del Massachusetts Institute of Technology, professore di ingegneria meccanica e capo del dipartimento della scienziata Evelyn Wang, (2) e altri tre al Massachusetts Institute of Technology e all'Università di Tokyo. Lo studio appare sulla rivista Nature Communications.

La dottoressa Evelyn Wang spiega: “Si scopre che per il processo di cambiamento di fase liquido-vapore, una comprensione fondamentale è ancora relativamente limitata. Sebbene siano state sviluppate molte teorie, in realtà non ci sono prove sperimentali dei limiti fondamentali della fisica dell'evaporazione. È un processo importante da capire perché è così onnipresente. L'evaporazione è prevalente in diversi tipi di sistemi come la generazione di vapore per centrali elettriche, le tecnologie di desalinizzazione dell'acqua, la distillazione a membrana e la gestione termica, come ad esempio i tubi di calore. Ottimizzare l'efficienza di tali processi richiede una chiara comprensione delle dinamiche in gioco, ma in molti casi gli ingegneri fanno affidamento su approssimazioni o osservazioni empiriche per guidare le loro scelte di materiali e condizioni operative.”

Utilizzando una nuova tecnica per controllare e rilevare le temperature sulla superficie di un liquido, i ricercatori sono stati in grado di identificare un insieme di caratteristiche universali correlate ai cambiamenti di tempo, pressione e temperatura che determinano i dettagli del processo di evaporazione. Nel processo, hanno scoperto che il fattore chiave, che determinava la velocità di evaporazione del liquido, non era la differenza di temperatura tra la superficie e il liquido ma piuttosto la differenza di pressione tra la superficie del liquido e il vapore ambientale.

Pagine