CNR

Macchina di calcolo basata sulla luce

Macchina di calcolo basata sulla luce

Macchina di calcolo che elaborando i dati alla velocità della luce. Il risultato apre importanti prospettive per lo sviluppo di tecnologie applicabili a numerosi ambiti disciplinari: dal sequenziamento genico, alla generazione di bit-coin e password sicure.

Lo studio, condotto da un gruppo di ricerca del Dipartimento di fisica della Sapienza e dell'Istituto dei sistemi complessi del Cnr, è pubblicato sulla rivista Physical Review Letters.

Trovare il tragitto più corto che collega molte città, confrontando i numerosi e diversi percorsi, è un compito che diventa sempre più arduo al crescere del numero di città da visitare. Calcoli di ottimizzazione combinatoria, simili a questo, sono molto frequenti nella quotidianità, nella scienza e nell'ingegneria, ma sono difficilmente trattabili su larga scala dai computer tradizionali.

Lo sviluppo di nuovi sistemi hardware che possano risolvere efficacemente complesse ottimizzazioni è una delle sfide della scienza moderna. Una direzione promettente è quella di codificare tali problemi in modelli di Ising, modelli fisico-matematici definiti da un insieme finito di variabili (spin), che possano essere risolti da specifici processori ottici, definite macchine di Ising. Queste macchine di calcolo codificano lo stato delle variabili e le loro connessioni nell'ampiezza e nella fase del campo elettromagnetico. Elaborando i dati alla velocità della luce attraverso diversi canali spaziali e di frequenze, promettono di essere estremamente più rapide di quelle elettroniche.

Il team di ricerca del Dipartimento di fisica della Sapienza e dell'Istituto dei sistemi complessi del Consiglio nazionale delle ricerche (Cnr-Isc), costituito da Davide Pierangeli e Giulia Marcucci e coordinato da Claudio Conti, ha progettato e realizzato sperimentalmente la più grande macchina di Ising mai dimostrata prima. Il risultato, pubblicato sulla rivista Physical Review Letters, apre importanti prospettive per lo sviluppo di tecnologie future.

Livelli trascurabili di mercurio nelle acque minerali italiane

Livelli trascurabili di mercurio nelle acque minerali italiane

Pubblicato sulla rivista Chemosphere uno studio coordinato dall'Istituto per la dinamica dei processi ambientali del Cnr. La ricerca, con una tecnica analitica specifica per la determinazione del metallo contaminante, conferma i livelli trascurabili per la salute della popolazione.

L'Istituto per la dinamica dei processi ambientali del Consiglio nazionale delle ricerche (Cnr-Idpa) ha coordinato uno studio sulle concentrazioni di mercurio (Hg) nelle acque minerali naturali italiane in bottiglia. La ricerca "Ultra-trace determination of total mercury in Italian bottled waters" (determinazione di ultra-tracce di mercurio nelle acque in bottiglia italiane) è stata pubblicata sulla rivista Chemosphere, in collaborazione con l'Istituto di nanotecnologia (Cnr-Nanotec), l'Università della Calabria (Unical), le Università Sapienza di Roma, degli Studi di Ferrara, Ca' Foscari di Venezia e Magna Graecia di Catanzaro.

"Nel biennio 2014-2016 sono state raccolte e analizzate in laboratorio, con una tecnica analitica specifica per la determinazione del mercurio (Hg) in ultra-tracce, 244 acque confezionate in bottiglia di 164 marche, rappresentanti il 64% dell'intero mercato italiano. I dati raccolti forniscono informazioni fino ad oggi assenti, confermando i livelli trascurabili di Hg nelle acque in bottiglia italiane, circa mille volte inferiori rispetto al valore limite di 1 microgrammo per litro previsto dalla Direttiva Europea 2003/40/CE", spiega Massimiliano Vardè del Cnr-Idpa. "Il mercurio è uno dei contaminanti più dannosi e indesiderabili, in particolare nell'ambiente acquatico. L'esposizione ad esso, anche a basse dosi, induce effetti avversi sul sistema nervoso centrale del feto, del bambino e dell'adulto e provoca, inoltre, significativa tossicità renale ed epatica, diminuzione della fertilità, alterazioni del sistema immunitario e danni al sistema cardiovascolare".

Oltre alla valutazione della qualità dell'acqua rispetto all'elemento tossico, la ricerca ha fornito importanti indicazioni in merito all'origine del mercurio nelle acque sotterrane.

Le proprietà meccaniche dei tessuti umani


Il risultato è stato ottenuto grazie a una tecnica microscopica innovativa e non invasiva, che apre una strada nella diagnostica clinica

Grazie alla sinergia di diversi Istituti del Cnr con ricercatori di Lens e Università di Perugia è stato possibile correlare l'elasticità del collagene alla sua morfologia ultrastrutturale più che alle sue caratteristiche biochimiche.

Grazie alla sinergia di tecnologie e personale del Consiglio nazionale delle ricerche - Istituto nazionale di ottica (Cnr-Ino), Istituto di fisica applicata Nello Carrara (Cnr-Ifac) e Istituto di chimica dei composti organometallici (Cnr-Iccom) di Sesto Fiorentino, Istituto officina dei materiali (Cnr-Iom) di Perugia - con colleghi del Lens e dell'Università di Perugia, per la prima volta è stato possibile correlare l'architettura del collagene alla sua elasticità, mettendo in risalto che le proprietà meccaniche dei tessuti sono determinate dalla morfologia ultrastrutturale del collagene, piuttosto che dalle sue caratteristiche biochimiche.

Il risultato, pubblicato su Nature - Communications Biology, è stato ottenuto grazie alla messa a punto di una tecnica microscopica capace di sondare morfologia, meccanica e biochimica dei tessuti umani in maniera innovativa e, attraverso la diagnostica clinica, apre la strada all'utilizzo della metodica in moltissimi ambiti biologici e biomedici, dalla differenziazione cellulare alla medicina rigenerativa.

“2Lo studio è di fondamentale importanza in molteplici campi. Il collagene infatti è la proteina strutturale più abbondante negli organismi viventi: forma la struttura di ossa, muscoli, tendini, legamenti e cartilagini, oltre a formare il tessuto connettivo su cui crescono e si sviluppano le diverse cellule che formano un organismo”, conferma Silvia Caponi, ricercatrice di Cnr-Iom. "Sappiamo che in ogni struttura biologica le proprietà morfologiche influenzano fortemente le caratteristiche meccaniche e che la corretta funzionalità dei tessuti è garantita dal bilanciamento di composizione chimica, caratteristiche morfologiche e meccaniche. Ora abbiamo un nuovo strumento di indagine in grado di individuare precocemente segnali di alterazioni nei tessuti in maniera non invasiva".

Pagine