Tecnologia

Le profonde reti neurali dell'intelligenza artificiale

Gli scienziati hanno scoperto che un'architettura ricorrente aiuta sia l'intelligenza artificiale che il nostro cervello a riconoscere meglio gli oggetti

Il laboratorio DiCarlo rileva che un'architettura ricorrente aiuta sia l'intelligenza artificiale che il nostro cervello a identificare meglio gli oggetti.

La capacità di ogni persona nel riconoscere oggetti è notevole. Se si vede una tazza sotto un'illuminazione insolita o da direzioni inaspettate, ci sono buone probabilità che il proprio cervello continui a calcolare che si tratta di una tazza. Tale riconoscimento preciso dell'oggetto è un 'santo graal' per gli sviluppatori di intelligenza artificiale, come gli scienziati che si occupano di migliorare la navigazione delle auto con guida autonoma.

Anche se la modellazione del riconoscimento degli oggetti principali nella corteccia visiva ha rivoluzionato i sistemi di riconoscimento visivo artificiale, gli attuali sistemi di apprendimento profondo sono semplificati e non riescono a distinguere alcuni oggetti la cui identificazione risulta essere molto intuitiva sia per i primati che per gli umani.

Nelle scoperte pubblicate su Nature Neuroscience, l'investigatore dell'Istituto McGovern James DiCarlo (1), assieme ai suoi colleghi, ha identificato prove che il feedback migliora il riconoscimento di oggetti difficili da riconoscere nel cervello dei primati e che l'aggiunta di circuiti di feedback migliora anche le prestazioni dei sistemi di reti neurali artificiali utilizzati per la visione di applicazioni.

Le reti neurali convoluzionali (2) profonde (DCNN) sono attualmente i modelli di maggior successo per il riconoscimento accurato di oggetti in tempi rapidi (meno di 100 millisecondi) e hanno un'architettura generale ispirata al flusso visivo delle regioni corticali che progressivamente costruiscono una rappresentazione accessibile e raffinata di oggetti visualizzati. La maggior parte dei DCNN sono tuttavia semplici rispetto al flusso del primate.

Robot progettato per salvare vite umane

I nuovi robot sono stati progettati con materiali resistenti affinché riescano ad operare in zone disastrate con lo scopo di salvare vite umane

I nuovi robot sono stati progettati con materiali resistenti in maniera che possano operare in zone disastrate a scopi umanitari.

I nuovi robot a forma di pallone da calcio, creati dagli ingegneri della University of California, Berkeley e del Squishy Robotics, (1) sono costruiti con materiali particolarmente resistenti. Con queste strutture, essi possono cadere da un'altezza di quasi 200 metri senza subire alcun danno al proprio châssis. Costruiti con una rete di aste, collegate da cavi di contrazione, possono anche cambiare forma per strisciare da un punto all'altro.

Dotare i robot di sensori e lasciarli cadere in zone disastrate potrebbe fornire ai primi soccorritori preziose informazioni sulle condizioni dell'area, come la presenza di gas velenoso, afferma la professoressa di ingegneria meccanica della University of California, Berkeley, Alice M. Agogino. (2)

"I nostri robot, dotati di sensori, sono progettati per strutture mobili facilmente implementabili. Questi automi sono progettati per salvare vite umane, ridurre costi, rischi e aumentare l'efficacia della risposta alle emergenze", afferma la dottoressa Alice M. Agogino. "Essi possono facilmente operare in una zona disastrata e fornire informazioni salvavita ai soccorritori. Hanno anche la capacità di lavorare sul campo come co-robots assieme ai loro partner umani".

Modello di materia soffice ad anelli elastici

Anelli elastici con taglia variabile da centinaia di nanometri a qualche micron come nuovo modello di materia soffice

Un team di ricerca del Cnr-Isc ha dimostrato, grazie a un modello numerico di materia composta da anelli elastici, come la risposta dinamica del sistema sia influenzata dall'abilità di deformarsi propria di questi colloidi soffici.

I colloidi sono particelle con taglia variabile da centinaia di nanometri a qualche micron e possono essere naturali o artificiali. L'avanzamento tecnologico degli ultimi 20 anni ha permesso di sintetizzare diverse varietà di queste particelle dalle molteplici proprietà, tra cui i cosiddetti colloidi 'soffici', fatti principalmente da materiale polimerico, ovvero catene flessibili che danno alle particelle la possibilità di deformarsi e di interpenetrarsi (pensate a delle reti estremamente morbide e intrecciate fra loro).

I collodi soffici presentano molteplici applicazioni ad esempio nella biomedicina, microfluidica e sensoristica ed è dunque importante comprendere come le proprietà di un singolo colloide influenzino il comportamento del materiale che essi formano.

In un recente studio numerico pubblicato su Nature Physics, (1) il team dell'Istituto dei sistemi complessi del Consiglio nazionale delle ricerche (Cnr-Isc), composto da Nicoletta Gnan e Emanuela Zaccarelli, ha mostrato che un modello numerico di particelle soffici con un'elasticità interna è in grado di riprodurre meccanismi osservati sperimentalmente, ma finora incompresi a livello microscopico.

“Ispirate dalla natura polimerica di questi colloidi, abbiamo deciso di lavorare in due dimensioni e di considerare dei semplici anelli polimerici elastici”, spiega Nicoletta Gnan. “Questi sono assimilabili a dei cerchietti la cui forma circolare viene mantenuta per via delle interazioni elastiche interne, che riescono quindi a mimare l'effetto di una rete polimerica. Più è forte l'interazione elastica, più gli anelli polimerici diventano duri, viceversa quanto meno forti sono le interazioni elastiche, quanto più soffici sono gli anelli. Questo permette loro di deformarsi e in questo modo di immagazzinare spontaneamente energia elastica (stress) che poi rilasciano quando riescono a tornare in forma circolare”.

Pagine