Molecole

Artrosi: un chip 'imita' la malattia per escogitare terapie mirate

Artrosi un chip imita la malattia per escogitare terapie mirate

Un chip sofisticato, delle dimensioni di una moneta, in cui è possibile coltivare la cartilagine e che in seguito può essere sottoposto a stress meccanico tale da generare gli effetti dell'artrosi.

Questo è lo straordinario risultato raggiunto presso il laboratorio MiMic (Microfluidic e Biomimetic Microsystems) del Politecnico di Milano del dottor Marco Rasponi (1) del campus di Milano, coordinatore dello studio insieme al dottor Andrea Barbero (2) dell'Ospedale Universitario di Basilea.

Non solo ha prodotto il chip rivoluzionario ma, mentre il piccolo dispositivo era in fase di sperimentazione, lo studio, pubblicato su Nature Biomedical Engineering, (3) ha anche dimostrato che l'iperstimolazione meccanica della cartilagine sembra essere sufficiente per indurre la patologia correlata all'osteoartrosi, senza dover ricorrere alla somministrazione di molecole infiammatorie come era comune fare fino ad ora.

Infatti, un'appropriata compressione del tessuto cartilagineo può indurre sintomi tipici dell'osteoartrosi (OA): infiammazione, ipertrofia e un'accelerazione dei processi degenerativi. Pertanto, nella cartilagine “su chip” si crea un ambiente ideale in cui testare l'efficacia e i meccanismi dei trattamenti farmacologici, abbreviando i tempi e i costi della sperimentazione e riducendo al contempo la necessità di test sugli animali.

Un pupo si muove grazie a un nuovo materiale

Un pupo si muove grazie a un nuovo materiale

PolyCOF: una nuova classe di membrane Covalenti reattive e organiche indipendenti con elevate prestazioni meccaniche conferiscono la capacità di muoversi a un pupo.

I ricercatori hanno conferito a un pupo la capacità di muoversi grazie a un nuovo materiale chiamato covalent organic frameworks (polyCOFs). Lo studio è stato pubblicato su ACS Central Science. (1)

Gli scienziati realizzano covalent organic frameworks (COF) convenzionali collegando semplici blocchi organici, come le molecole contenenti carbonio con acido borico o gruppi aldeidici, aventi legami covalenti. Le strutture porose ordinate mostrano un grande potenziale per varie applicazioni, tra cui catalisi, stoccaggio di gas e somministrazione di farmaci.

Tuttavia, i COF esistono tipicamente come polveri cristalline di dimensioni nanometriche o micro che sono fragili e non possono essere trasformate in fogli o membrane più grandi che sarebbero utili per molte applicazioni pratiche. Gli scienziati Yao Chen, Shengqian Ma, Zhenjie Zhang e colleghi si sono chiesti se potessero migliorare le proprietà meccaniche dei COF usando polimeri lineari come elementi costitutivi.

Sviluppati sensori quantici per misurare molecole

Sviluppati sensori quantici per misurare molecole

I ricercatori dell'Università Leibniz Hannover e Physikalisch-Technische Bundesanstalt sviluppano sensori quantici più sensibili per misurazioni molecolari.

Per secoli, gli esseri umani hanno ampliato la loro comprensione del mondo attraverso misurazioni sempre più precise della luce e della materia. Oggi i sensori quantici ottengono risultati estremamente accurati. Un esempio di questo è lo sviluppo di orologi atomici, che non dovrebbero né guadagnare né perdere più di un secondo in trenta miliardi di anni. Le onde gravitazionali sono state rilevate anche tramite sensori quantistici, in questo caso utilizzando interferometri ottici.

I sensori quantistici possono raggiungere sensibilità che sono impossibili secondo le leggi della fisica convenzionale che governa la vita di tutti i giorni. Questi livelli di sensibilità possono essere raggiunti solo se si entra nel mondo della meccanica quantistica con le sue affascinanti proprietà - come il fenomeno della sovrapposizione, in cui gli oggetti possono essere in due posti contemporaneamente e dove un atomo può avere due diversi livelli di energia allo stesso livello tempo.

Sia generare che controllare tali stati non classici è estremamente complesso. A causa dell'alto livello di sensibilità richiesto, queste misurazioni sono soggette a interferenze esterne. Inoltre, gli stati non classici devono essere adattati a uno specifico parametro di misurazione.

Il dottor Fabian Wolf, assieme al team di ricercatori dell'Università Leibniz di Hannover, Physikalisch-Technische Bundesanstalt di Braunschweig e dell'Istituto nazionale di ottica di Firenze, ha introdotto un metodo basato su uno stato non classico adattato a due parametri di misurazione contemporaneamente. Egli afferma: “sfortunatamente, questo spesso determina una maggiore inesattezza rispetto ad altri parametri di misurazione rilevanti. Questo concetto è strettamente legato al principio di indeterminazione di Heisenberg.”

Pagine