Neurologia

Stimolati gli astrociti, le cellule del cervello a forma di stella

Gli astrociti, le cellule del cervello a forma di stella, possono essere eccitati con un campo elettrico applicato da un dispositivo organico

Dimostrato per la prima volta che gli astrociti, le cellule cerebrali a forma di stella finora considerate passive, possono essere eccitati con uno campo elettrico applicato da un dispositivo organico.

Questa forma di eccitazione è importante per il funzionamento dell’attività neuronale nella memoria e nell’apprendimento. Possibili ricadute per la cura di patologie come Alzheimer, Parkinson, Ictus ed Epilessia. Il lavoro condotto da Cnr Isof e Cnr-Ismn è pubblicato su Advanced Healthcare Materials.

Quando parliamo di cervello molti di noi pensano ai neuroni, eppure negli ultimi decenni è stato dimostrato che la classica visione neurone-centrica delle funzioni e disfunzioni cerebrali è stata ormai sorpassata. Infatti, ciò che rende diverso il nostro cervello da quello di altri mammiferi, non è il numero o la struttura dei neuroni, bensì quella di altre cellule, dette astrociti.

Gli astrociti, così denominati per la loro tipica morfologia stellata, sono stati a lungo considerati mero ‘collante’ che riempiva gli spazi tra neuroni. Sono definiti cellule non eccitabili perché non possono generare e propagare l’impulso bioelettrico nello stesso modo dei neuroni.

Un lavoro pubblicato sulla rivista Advanced Healthcare Materials (1) e coordinato da Valentina Benfenati dell’Istituto per la sintesi organica e la fotoreattività del Consiglio nazionale delle ricerche (Cnr-Isof), in collaborazione con Michele Muccini e Stefano Toffanin dell’Istituto per lo studio dei materiali nanostrutturati del Consiglio nazionale delle ricerche (Cnr-Ismn), dimostra che anche gli astrociti, e non solo i neuroni, rispondono al campo elettrico applicato dal dispositivo organico, e che è possibile stimolare e modulare l’attività degli astrociti applicando un campo elettrico estremamente piccolo.

Realizzata connessione sinaptica tra neuroni

Abilitata la diretta comunicazione tra neuroni in modo artificiale, aprendo prospettive nelle interfacce brain-computer e nella protesica di nuova generazione

Realizzata per la prima volta la connessione sinaptica tra neuroni tramite un dispositivo elettronico (memristore) sviluppato da polimeri, garantendo funzionalità analoghe alle sinapsi naturali.

Viene così abilitata la diretta comunicazione tra neuroni in modo artificiale, aprendo prospettive nelle interfacce brain-computer e nella protesica di nuova generazione. La ricerca, condotta dal Cnr-Imem, è pubblicata su Advanced Materials Technologies. (1)

Una sinapsi è una struttura biologica che connette due neuroni stabilendo tra essi un flusso di informazioni specifico e unidirezionale. Queste connessioni sono elementi chiave per funzioni neuronali essenziali come l’apprendimento e la memorizzazione che si fondano sul numero di ripetizioni (o prove) e il raggiungimento di varie soglie di tensione.

L’emulazione delle loro proprietà e la realizzazione di interfacce tra cervello e macchine (brain-computer), in grado di acquisire, leggere e stimolare l’attività celebrale naturale, è oggetto di studio intensivo crescente nel panorama delle ricerche internazionali.

Grazie allo studio condotto da Silvia Battistoni, Victor Erokhin e Salvatore Iannotta, l’Istituto dei materiali per l'elettronica ed il magnetismo del Consiglio nazionale delle ricerche (Cnr-Imem) ha realizzato dei memristori organici, dispositivi in grado di trattenere una memoria della corrente passata al loro interno, in grado di emulare i comportamenti sinaptici di memorizzazione e apprendimento delle cellule neuronali naturali.

“I risultati dimostrano l’effettiva interfaccia funzionale ‘neurone-memristore-neurone’, in cui il dispositivo gioca il ruolo di una sinapsi, consentendo la comunicazione tra le due cellule in modo pressoché analogo a quanto avviene in natura con un importante cambio di paradigma rispetto all’approccio consolidato basato su microelettrodi”, spiega Salvatore Iannotta del Cnr-Imem.

Neurostimolatore wireless per i disturbi neurologici

Il nuovo neurostimolatore WAND funziona come un pacemaker per il cervello. Effettua trattamenti mirati ai pazienti affetti da epilessia e Parkinson

Un nuovo neurostimolatore sviluppato dagli ingegneri dell'UC Berkeley può percepire e stimolare la corrente elettrica nel cervello allo stesso tempo, offrendo trattamenti mirati ai pazienti con malattie come l'epilessia e il Parkinson.

Il dispositivo, chiamato WAND, funziona come un “pacemaker per il cervello”, controlla l'attività elettrica del cervello fornendo una stimolazione elettrica nel momento in cui rileva qualcosa di anomalo.

Questi dispositivi possono essere estremamente efficaci per prevenire tremori o convulsioni debilitanti in pazienti con una varietà di condizioni neurologiche. Gli impulsi elettrici che precedono un attacco o un tremore possono essere estremamente deboli. Per prevenire questi disturbi neurologici la frequenza e la forza della stimolazione elettrica richieste devono essere particolarmente mirate.

I precedenti dispositivi offrivano un trattamento ottimale solo dopo anni di piccoli aggiustamenti da parte dei medici. 'WAND' (Wireless Artifact-free Neuromodulation Device) è un dispositivo wireless autonomo: nel momento in cui riconosce i segni del tremore o delle convulsioni, ha la capacità di regolare autonomamente i parametri di stimolazione che inibiscono i movimenti indesiderati. Questo dispositivo a circuito chiuso può stimolare e registrare simultaneamente, ma anche regolare i parametri in tempo reale. 'WAND' può registrare l'attività elettrica su 128 canali o da 128 punti nel cervello. Un coefficiente molto elevato se si considera che i tradizionali sistemi a circuito chiuso si basano su otto canali. Per dimostrare il dispositivo, il team ha utilizzato 'WAND' per riconoscere e ritardare i movimenti specifici del braccio nei macachi Rhesus. Il dispositivo è descritto in uno studio apparso in Nature Biomedical Engineering.(1)

La dottoressa Rikky Muller,(2) una assistente professoressa di ingegneria elettronica e scienze informatiche a Berkeley spiega: “Il processo per trovare la giusta terapia di un paziente è estremamente costoso e può richiedere anni. Una significativa riduzione dei costi e della durata può potenzialmente portare a risultati e accessibilità notevolmente migliorati. Vogliamo consentire al dispositivo di capire qual è il modo migliore per stimolare un dato paziente a dare i migliori risultati. E puoi farlo solo ascoltando e registrando i segnali neurali.”

Pagine