
Transfer depends on Acquisition: Analyzing
Manipulation Strategies for Robotic Feeding

Daniel Gallenberger∗, Tapomayukh Bhattacharjee†, Youngsun Kim‡ and Siddhartha S. Srinivasa§

Paul G. Allen School of Computer Science and Engineering

University of Washington

Seattle, USA
Email: ∗danielga@cs.washington.edu, †tapo@cs.washington.edu, ‡yskim@cs.washington.edu, §siddh@cs.washington.edu

Abstract—Successful robotic assistive feeding depends on reli-
able bite acquisition and easy bite transfer. The latter constitutes
a unique type of robot-human handover where the human needs
to use the mouth. This places a high burden on the robot to
make the transfer easy. We believe that the ease of transfer
not only depends on the transfer action but also is tightly
coupled with the way a food item was acquired in the first
place. To determine the factors influencing good bite transfer, we
designed both skewering and transfer primitives and developed a
robotic feeding system that uses these manipulation primitives to
feed people autonomously. First, we determined the primitives’
success rates for bite acquisition with robot experiments. Next,
we conducted user studies to evaluate the ease of bite transfer for
different combinations of skewering and transfer primitives. Our
results show that an intelligent food item dependent skewering
strategy improves the bite acquisition success rate and that the
choice of skewering location and the fork orientation affects the
ease of bite transfer significantly.

Index Terms—assistive feeding; deformable object manipula-
tion; bite acquisition; bite transfer

I. INTRODUCTION

Eating is an activity of daily living (ADL) and losing the
ability to self-feed can be devastating [1]. According to a
survey in 2010, around 1.0 million adults in the United States
required the assistance of another person to help them eat [2].
Conditions such as cerebrovascular diseases like strokes [3],
Parkinson’s, arthritis, multiple sclerosis [4], spinal cord in-
juries [5], bilateral amputations, and many others can render
individuals unable to eat on their own accord. Instead, they
depend on a caregiver to feed them every morsel of every
meal every day [6]. In addition to positively impacting the
self-worth of people with disabilities [7], [8], independent
dining would have a considerable effect on caregiver hours
because feeding is one of the most time-consuming tasks for
caregivers [9], [10]. Also, dining together with other people
is a cornerstone of society and provides a personal link to
the wider community [11]–[13] but the presence of caregivers
during dinner with friends or relatives may pose a privacy
concern [14].

Some commercial powered feeding systems currently on
the market [15]–[18] address this problem using a robotic
arm that scoops food with a spoon. These systems have
lacked widespread acceptance probably because of limited
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Fig. 1: Robotic feeding using various manipulation strategies.

mobility and minimal autonomy demanding a time-consuming
food preparation process in specialized food containers [15],
[16], [19]. A general-purpose robotic system attached to a
wheelchair with increased mobility can perform in situ feeding
tasks in addition to general tasks such as opening doors and
picking up items. Feeding is challenging in because it involves
complex bite acquisition strategies for food with a variety
of physical characteristics. Bite transfer is also challenging
because the food needs to be positioned and oriented relative to
the mouth in a way conducive to easy bite transfer. We address
this challenge by employing our key insight that depending
on the physical properties of a food item, the manipulation
strategies for easy bite transfer may be dependent on the
strategies for reliable bite acquisition.

Using a fixed strategy for bite acquisition is not ideal in
realistic situations because food items come in various shapes,
and have physical properties that are difficult to model. Eggs,
for example, may require skewering at a position where the
white and the yolk are simultaneously skewered to prevent any
one part from falling off [20]. Bananas may require angled
skewering approach angles to prevent them from slipping due
to gravity when lifting off. Our robotic system uses fine manip-
ulation planning and leverages the complementary capabilities
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Fig. 2: Our feeding system autonomously skewers food items and feeds people with different strategies using multiple sensing
modalities. The system uses a food item dependent force threshold (shaded region in Fig.2(c)) to skewer a food item.

of multiple sensing modalities such as vision and haptics
to automatically acquire bites for a variety of food items.
Our system decides which discrete manipulation primitive to
instantiate such as a food item dependent skewering approach
angle as well as select its continuous parametrization such
as skewering position, rotation and how much force to apply.
We analyzed the effect of these variations on bite acquisition
success rate.

Bite transfer may also need different food item dependent
strategies because an easy bite transfer strategy may require a
robot to orient the food item such that a user can take a bite
without opening the mouth excessively [20]. One can think
of feeding as a handover of food from the fork or spoon to
the mouth. However, unlike traditional hand-to-hand transfers,
hand-to-mouth transfers pose a greater burden to the robot
initiator because of fewer degrees-of-freedom to orient the
mouth to receive a bite. Therefore, we developed our system
to transfer a bite using different discrete handover primitives
and compared these primitives for the ease of bite transfer
using studies with 25 human participants.

Our results show that a skewering strategy based on a
food item’s shape, size and physical properties outperforms
the baseline approach of skewering at the center in terms of
the bite acquisition success rate, especially for long, slippery,
and heterogeneous food items. Our human participant studies
show that transfer depends on acquisition. Angled skewering
combined with angled transfer performed significantly better
than vertical skewering combined with horizontal transfer for
easy bite transfer (See Fig.1). Also, people tend to avoid hitting
the tines of the fork while biting a long and slender carrot and
thus, where a robot skewers an item can affect the ease of bite
transfer as well.

Our contributions can be summarized below as:

1) We developed a feeding system that can acquire solid
food items and feed a user autonomously using multiple
complementary modalities of vision and haptics.

2) We designed various discrete manipulation primitives
and their continuous parametrizations for reliable bite
acquisition and ease of bite transfer, and empirically
compared the different strategies with human partici-

pants.
3) We created a new dataset [21] of food items with masks

of skewering positions and rotations for effective bite
acquisition and bite transfer.

II. RELATED WORK

An autonomous robotic feeding system encompasses the
fields of manipulation, perception, and human-robot interac-
tion. There is hardly any work investigating the human-robot
interaction aspects of varied manipulation strategies used for
autonomous robotic feeding, but here, we present a review of
work related to manipulation and perception.

A. Food Manipulation

Though there are few studies on manipulation of solid
food items for assistive feeding, related work on solid food
manipulation focus on the either packaging or cooking applica-
tions [22], [23]. However, food manipulation in the context of
assistive feeding is different from food manipulation in other
contexts and it has its unique manipulation, perception, and
human-robot interaction challenges.

1) Acquisition: Gemici et al. [24] study food manipulation
in the context of food preparation for cooking, but their system
uses a spatula and a gripper for grasping the food items
which require different manipulation strategies than skewering.
There is also considerable work on industrial robotic food
manipulation but Chua et al. [25] noted that intrusive gripping
methods are generally not used in this field because they could
potentially damage the food items and force feedback is crucial
to manipulate non-rigid food items. Park et al. [26] developed
a semi-solid food acquisition system for assistive feeding
using a general purpose manipulator to scoop yogurt with a
spoon. They also developed an anomaly detection framework
for assistive feeding using multiple sensing modalities [27],
[28]. The system that comes closest to ours in terms of bite
acquisition is the work done by Herlant [19], which also uses
a fork to skewer solid food items autonomously. However,
our objective to improve bite transfer calls for additional
capabilities, such as identifying single food items on the plate
and choosing skewering positions and fork rotations with bite
transferability in mind.
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Fig. 3: Our system uses multimodal sensing modalities to
sense, perceive, plan, and control the robot to skewer food
items and transfer them to a user.

Interestingly, there is also a vast body of literature on
grasping that is related to food manipulation. However, unlike
most of the work on grasping which focuses on directly manip-
ulating a rigid object, our application demands indirect tool-
mediated manipulation of deformable objects. Having said
that, finding a good grasping location is conceptually similar
to finding good skewering locations. A common approach
for finding good grasping locations is using learning based
methods to learn good grasping locations on a 3d model and
match them to a perceived object, as seen in [29]–[31], or
using images as in [32], [33], or from real robot grasping
trials [34]. However, most of these approaches may have
challenges with deformable objects and may be difficult to use
for manipulating food items because the food may be damaged
and the physical characteristics may change after one skewer-
ing attempt. Additional interesting results in manipulation of
difficult items include the research on articulated objects by
Katz et al. [35] and the work on learning elasticity parameters
by Frank et al. [36].

2) Transfer: Although it is hard to find related studies
on analyzing manipulation strategies for robotic bite transfer,
similarities can be drawn to the studies on robot-human
handovers. Research on robot-human handovers often focuses
on rigid objects that are gripped with fingers [37]–[39] which
is different from tool-based handovers, where a robot transfers
a bite using a fork. The feeding handover situation poses an
additional challenge of transferring to a mouth with fewer
degrees of freedom. Canal et al. [40] explore bite transfer in
the context of a personalization framework. A related, more
general idea is found in [41], where the human preference
for ”default orientations” of objects and the importance of
grasp type were identified. Aleotti et al. [42] built on this
by orienting items in a way that makes grasping easier and
confirmed it with a human user study. In our paper, we want to
extend the research domain of robot handovers to the use case
of assistive feeding, where items are not grasped and handed
to a person’s hand, but skewered with a fork and transferred
to a human’s mouth.

B. Food Perception

Food perception for an autonomous robotic feeding system
requires classification and detection of food items on a plate
and segmentation for skewering position and rotation masks.

With the latest success in deep supervised learning, image
classification and object detection research have been under ac-
tive development. Researchers have proposed many networks
for object classification such as AlexNet [43], GoogLeNet
[44], VGG Net [45], ResNet [46], DenseNet [47], Feature
Pyramid Network (FPN) [48], and a variety of work on food
detection [49]–[51]. There have also been variants that prior-
itize speed such as MobileNet [52] and SqeezeNet [53]. On
top of the evolution of the computing power, comprehensive
datasets such as ImageNet [54], PASCAL VOC [55], and
COCO [56] datasets continue to drive this research area.

For object detection, algorithms such as Overfeat [57], R-
CNN series [58]–[62], Yolo [63], SSD [64], RetinaNet [65],
and DetNet [66] have made great strides. Among the state-
of-the-art object detectors, we chose RetinaNet for food item
detection and recognition, mainly because RetinaNet is faster
and lighter than two-stage object detectors such as Faster R-
CNN, but more accurate than other single stage networks such
as SSD or YOLO [65].

Another area focusing on image segmentation or semantic
segmentation infers tight masks for each object in a scene. For
image segmentation, researchers developed algorithms such
as Vanilla FCN [67], U-Net [68], SegNet [69], and segmen-
tation with two-way DenseNet [70]. Mask RCNN [71] and
BlitzNet [72] generate fine masks on top of object detection
layers. [71] showed that the independent masks from Mask
RCNN with the Fully Convolutional Network (FCN) branch
achieved the highest performance. We adopt this idea and
implement two sub-branches for our skewering position and
rotation masks for bite acquisition, which sits on top of our
RetinaNet object detection network.

III. AN AUTONOMOUS ASSISTIVE FEEDING SYSTEM

We developed an autonomous robotic feeding system that
uses newly developed sensing, perception, planning, and con-
trol modules to acquire a bite from a plate and feed it to
a person using various manipulation primitives. Our system
consists of a 6 DoF JACO robotic arm [73] mounted on a
powered ROVI wheelchair [74] to mimic similar setups used
in real homes. The robotic arm has 2 fingers that grab an
instrumented fork (forque, see Fig.2(b)) using a custom built
3D printed fork holder. The system uses visual and haptic
modalities to perform the feeding task. For haptic feedback,
we instrumented the forque with a 6-axis ATI Nano25 Force-
Torque sensor [75]. We use haptic sensing to control the
end effector forces during skewering and to detect if food
acquisition was successful as well as if the fork hits something
unexpectedly to improve safety. For visual feedback, we
mounted a custom built wireless RGBD camera on the robot’s
wrist by using the Intel RealSense D415 camera and the Intel
Joule 570x for wireless transmission.

We designed the system such that it perceives a food
item on a plate using the perception methods described in



(a) RetinaNet (b) Baseline (c) SPNet

Fig. 4: Our system uses RetinaNet to detect food items. After detecting food items, our system can either use a baseline method
to estimate a skewering location in the center or SPNet for estimating masks of skewering locations and rotations.

Section IV-A, servoes to it using the visual modality, acquires
the bite using the haptic modality, and then feeds it to a
person by detecting the face and servoing to it using the
visual modality. Our system runs on Ubuntu 16.04.5 and
uses ROS Kinetic [76] for communication between modules
and visualization, AIKIDO [77] for planning and executing
trajectories, and PyTorch [78] and Dlib C++ Library [79] for
perception methods. Our face perception works with ±80°
roll, ±30° pitch, ±38° yaw, and is reasonably robust to
mouth occlusion. We developed various ROS nodes which
communicate with each other for the feeding task. The feeding
node, which uses information from the other nodes, decides
the sequence of actions to control the robot.

Fig.3 shows the flow of information in the system. First,
the user selects a type of food for the next bite. Different
interfaces depending on the abilities of the user are conceivable
for this interaction, but since interface design is not the focus
of this work, we used a terminal. The robot responds by
moving its camera above the plate, perceiving the environment
and checking if the selected food can be found. If it does
find a suitable food item, a visual servoing control loop
begins: While carefully moving the fork and camera closer
to the desired food item, the system continually perceives
the plate, tracks the selected food item and estimates its
continuous parametrization of fork position and rotation using
our perception module. We implemented the visual servoing
procedure to help increase skewering precision in the pres-
ence of manipulation and perception uncertainties in realistic
scenarios such as a non-rigid wheelchair base.

Once the fork tines touch the food item, the controller uses
haptic feedback to skewer it. Once the force values exceed
a threshold, the controller stops the skewering motion and
the system continues with planning for the bite transfer step.
This threshold depends on the type of food item and was
adapted from the average force data obtained from the human
experiments in [20]. On an average, approaching the food
takes around 3 seconds and skewering it takes 1.3 seconds.
Food perception takes anywhere between 120ms and 450ms
depending on the number of items on the plate.

For bite transfer, we re-use our closed loop visual servoing
capability to approach the user’s face using discrete manipula-
tion primitives of transfer angles. The system, while carefully

moving the fork and food close to the user, continually re-
perceives the face and adjusts its trajectory. In this case, visual
servoing not only improves precision but also allows the robot
to handle some degree of neck movement on the user’s part.
This is important because some disabilities involve involuntary
spastic movements which may make the care-recipient move
unpredictably. In our study (Section VII) the robotic system
stopped the approach before the fork touched the mouth be-
cause of safety concerns. However, the haptic sensing modality
enables the system to continue moving towards a user’s mouth
until it feels a slight touch based on haptic feedback from the
physical interaction.

We run our bite acquisition and transfer experiments using
this autonomous robotic feeding system. For bite acquisition,
we designed our system to be able to use two discrete
skewering primitives based on the skewering approach angles,
vertical and angled, which are parameterized by the perception
outputs. Similarly for bite transfer, our system can use two
discrete transfer primitives, horizontal and angled. We also de-
signed our system to use different continuous parametrizations
of these manipulation primitives (See Section IV). However,
the system design is independent of the specific sensors or
robot used and we expect our methods to generalize to any
robot equipped with haptic and visual sensing capabilities.

IV. SKEWERING MANIPULATION PRIMITIVES

For each of the discrete skewering manipulation primitives,
we designed their continuous parametrizations not only for
successful bite acquisition but also with easy bite transfer
in mind. For example, the system can estimate an intelligent
skewering position (where) and fork rotation (how) based on
physical characteristics of a food item. We implement and train
two neural networks to give the robot autonomous capabilities
to answer these questions.

A. Skewering Primitives: Where and How to Skewer?

Perceiving food items is an essential initial step of bite
acquisition. Our goal is to localize food items and estimate
their pose in 3D space from the input RGBD stream. In
a realistic situation, food items may be small, placed in a
cluttered plate, and need to be perceived in real-time.

For detecting food items, we choose RetinaNet for the
reasons mentioned in Section II-B. For each bounding box
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Fig. 5: SPNet architecture with two dense blocks and two sub-
branches for binary and rotation masks.

generated by the object detector, our Baseline approach sets
the midpoint of the bounding box as its skewering position.
However, food items are of different shapes and physical
characteristics. Therefore, we propose the Skewering Position
Network (SPNet), a network that estimates the skewering loca-
tions and rotations that could result in reliable bite acquisition
and easy bite transfer for each bounding box (see Fig.5). SPNet
consists of base convolutional layers and two sub-branches for
binary masks and rotation masks. Compared with a single lo-
cation and rotation per bounding box, masks can represent the
probability distribution of all the possible skewering locations
and corresponding rotations. We developed SPNet running on
top of RetinaNet instead of extending Mask RCNN because
we do not need pixel-wise mask generation and masks over
the entire input scene – SPNet runs only for the food item we
want to acquire.

The base convolutional layers are composed of multiple
Convolution-Activation-Pooling sets and reduce the width
and height of the input (136 × 136) to the size of binary
and rotation masks (17 × 17). We developed two kinds
of base convolutional layers. The simple network has only
three Convolution-Activation-Pooling sets, and we adopt the
dense block structure from DenseNet in order to increase the
representation power of the network. We placed two dense
blocks with different numbers of inner layers in the network. A
shallower version has 3 and 6 inner layers in each dense block
and a deeper version has 6 and 12 inner layers respectively.

The binary mask is one of the two branches on top of
the base convolutional layers. After four convolutions without
pooling, the final mask consists of 17×17 grid cells. Each cell
represents the probability score of the skewering location at
the center of the cell. We use the binary cross entropy loss for
training this mask. The rotation mask consists of 17× 17× a
grid cells, where a is the angle resolution represented by the
number of classes for the discretized angles between [0, π).
We discretized angles because the rotation classification was
more reliable than rotation regression for our early test cases.
Furthermore, with discretization, we can handle the rotation
free annotation as a class among other specific rotations. For

example, when the angle resolution is 18, there are a total of
19 classes: class 0 represents any rotation while class 1 ∼ 18
denote specific angles, (class id−1)×10°. We use the cross
entropy loss to train the rotation for each cell.

B. Food Manipulation Dataset

We created a new dataset of food items to train RetinaNet
and SPNet [21]. For the data collection, we maximized the
variety of viewpoints and the selection and placement of food
items in the scenes to increase the detection performance. We
collected total 478 images including 349 real images by taking
photos of plates of food items and 129 synthetic images which
were rendered using the Unreal Engine.

We collected a total of 3,722 bounding boxes composed
of 560 bananas (15%), 576 cantaloupes (15.5%), 556 carrots
(14.9%), 636 celeries (17.1%), 597 eggs (16%), and 797
strawberries (21.4%). For the real images, we used an applica-
tion, LabelImg [80], to manually record bounding boxes. For
the synthetic images, we modified an Unreal Engine plugin,
UnrealCV [81], so that it can automatically generate PASCAL
VOC style annotations for random scenes. We generated a
total of 2,954 masks for real images by using a new labeling
application we developed. From the images and bounding
box annotations, the application generates cropped images
and overlays a 17 × 17 grid on the images so that a user
can select skewerable grids and set a rotation value for a
group of adjacent cells. Our dataset and code for the labeling
application are available at [21], [82].

We categorized the six food items into three categories
based on their shape and size: small, long, and round. Can-
taloupes, bananas, and strawberries were in the small category,
carrots and celeries were in the long category, and eggs
were in the round and heterogeneous category. We generated
the masks with specific rules for each category for effective
feeding, so that SPNet learns our category-dependent strategies
(see Fig.4), like skewering long items at their ends with the
tines perpendicular to the item’s long axis. We identified these
skewering rules using the insights presented in [20].

C. Skewering Primitive Selection Performance

We tested multiple versions of SPNet with varying dense
block sizes and angle resolutions. All the network variants
including the simple SPNet were trained with the dataset until
the training loss stabilized, and for the binary masks, they
reached a similar test accuracy of 96.5%. However, the F1
score of the dense block SPNet was 11.76% higher than the
simple SPNet. The recall of the dense block SPNet was higher
than that of the simple SPNet while their precisions were
similar.

All networks showed usable performance for the rotation
masks. Among the various discretizations of angles such as 9,
18, 36, 90, and 180, we get the best performance when we
discretized [0, 180) into 18 angles. Thus, we chose the SPNet
variant with shallow dense blocks and 18 angles resolution for
bite acquisition. The performance of SPNet varies depending
on the category of food items. See Table I for details.

The “small” category was the easiest one since it is rotation
free and the skewering positions in the category are symmetric



TABLE I: SPNet performance per category of food items

Cate-
gory

Mask
Accuracy

Mask
Precision

Mask
Recall

Mask F1
Score

Rotation
Error

S* 0.974 0.739 0.664 0.693 -1.000
L* 0.974 0.691 0.551 0.604 6.986

RH* 0.934 0.687 0.666 0.675 4.710

* S = Small, L = Long, and RH = Round and Heterogeneous.

and placed around the center of the masks. SPNet performed
better for this category compared to the other categories.

The “long” category was more difficult than the “small”
category. We generally labeled two groups of skewering po-
sitions per mask near each end, and the rotation of a group
of skewering positions was perpendicular to the long edge of
the item. SPNet showed 97.4% accuracy, but the recall of
this category was lower than that of others. The main reason
for the low recall is probably due to the random shapes of
celeries.

The “round and heterogeneous” category only included eggs
which were labeled with skewering positions along the edge
of yolk based on inputs from previous human studies. SPNet
performed well for this category and interestingly showed a
high F1 score. Although the accuracy of binary masks was
slightly lower than others, it was reasonable for our robot
experiments.

V. BITE ACQUISITION EXPERIMENTS

We performed experiments to determine the success rate
of bite acquisition using various discrete manipulation prim-
itives and their continuous parametrizations. We used our
autonomous robotic feeding system (See Section III) for these
experiments. We performed our experiments with 6 food items:
bananas, cantaloupes, carrots, celeries, hard-boiled eggs, and
strawberries. We selected these food items based on their
varied shape, size, and compliance, which may affect bite
acquisition [20]. Carrots and celeries are long and slender,
cantaloupes and strawberries are small and round, bananas are
soft and slippery, and hard-boiled eggs are heterogeneous with
both yolk and white. Furthermore, caregivers mentioned that
these food items are among the regular salad items that patients
eat.

Our experiment consisted of the robotic arm autonomously
acquiring food items with different skewering strategies: the
baseline method, which skewers at the center of the food item,
SPNet, and BLD (Bite Location Detector), the state of the art
method used by Herlant [19].

Using each of these strategies, our autonomous robotic
system skewered 2 plates of 5 pieces of each of these 6 food
items, thus totalling to 3 skewering position strategies × 2
plates × 5 pieces × 6 food items = 180 trials. Since both
the baseline and SPNet methods are capable of letting the
user select the food item to acquire, our system attempted
skewering each item only once. This is in contrast to BLD,
which doesn’t let the user choose and thus is free to retry food
items. We restrict BLD to 30 attempts to match the number
of trials used for the other methods.

For two of the food items, bananas, and strawberries, we
also compared two skewering approach angle strategies: ver-

tical and angled. We had two discrete manipulation primitives
for the angled primitive, one with horizontal tines and one
with vertical. Bananas often slip off the fork, so we tilted
the fork by 45 degrees to orient the tines more horizontally.
When skewering strawberries, the tines tend to slip on the
rounded surface without penetrating it. Therefore, we tilted
the fork in the other direction to so that the tines skewered the
strawberry vertically. Using SPNet, we skewered 2 plates of 5
items for bananas and strawberries, resulting in 20 additional
trials which we compared with the vertical performance of the
above experiment.

For each trial, the robotic arm perceived food items from
above the plate, chose one of the food items to skewer, and
lifted it off the plate. If it stayed for at least 5 seconds, we
labelled the bite acquisition attempt as successful. After each
trial, we removed the food item from the fork and discarded
it.

VI. BITE ACQUISITION RESULTS

We found that SPNet generally outperformed the baseline
approach, especially for cantaloupes, carrots, and eggs (See
Fig.6(b)). The total success rate was 0.55 for the baseline, 0.7
for SPNet and 0.633 for BLD.

The results of baseline and SPNet are significantly different
with p < 0.05 using the t-test (t(29) = 2.19). In the case
of carrots, this difference can be attributed to their long and
slender shape: If the fork tines are not oriented perpendicular
to the long axis of the carrot, they tend to slip off the curved
surface. The intelligent orientation of the fork with respect
to the food item solves this issue. Likewise, for eggs with
the heterogeneous mixture of yolk and white, skewering those
simultaneously prevents the yolk from falling off during lift-
off, and thus leads to successful bite acquisition.

In comparison, the state-of-the art method BLD performed
better than the baseline approach and slightly worse than
SPNet. The current experiment did not find statistically sig-
nificant differences with SPNet. However, it should be noted
that BLD is free to choose which item to try next and
skewer multiple items whereas the baseline method and SPNet
are constrained to try to acquire each food item only one
time. This implies that BLD could try skewering easier items
multiple times and ignore difficult items.

Our second experiment compared the performance of ver-
tical skewering with angling to adapt to the properties of the
food item. Angling the tines more horizontally for bananas
results in a success rate of 0.9, compared to 0.2 with a vertical
fork, which is significantly different at p < 0.01 using a t-
test (t(9) = 3.15). For strawberries, angling the tines more
vertically results in a success rate of 0.8, compared to 0.4
with a vertical fork, which is significantly different at p < 0.05
(t(9) = 1.83). Generally, tilting the fork to adapt for food type
specific difficulties results in big a improvement in success rate
from 0.3 to 0.85 with a statistical significance of p < 0.01
(t(19) = 3.52). Using SPNet together with fork angling for
specific items results in a success rate of 0.88.
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Fig. 6: SPNet outperformed the baseline approach particularly for long food items. For strawberries and bananas, angled
skewering improved the success rate significantly.

VII. BITE TRANSFER STUDY

For the next set of experiments, our objective was to find a
set of manipulation primitives that makes biting off the fork
easier. We hypothesized that users would prefer different bite
transfer strategies for different food items and that choosing
an appropriate combination of transfer and acquisition strategy
would affect the ease of bite transfer.

Insight about the former was gained from a human
study [20], which found that some people, when tasked with
feeding a mannequin, tilted the fork for specific food items
in order to orient the food and allow for easy bite transfer.
Fig.7(a) illustrates the difference in the human participants’
transfer angles. This told us that the shape of the food item
may call for a different transfer angle. The workspace of our
robot did not allow us to evaluate all of these angles, so we
compared the horizontal approach with an angled approach
tilted by 45°, which was the maximum we could reach reliably.
We believe that it is not so much angling the fork during
transfer as it is the relative orientation of the food item with
respect to the mouth that affects bite transfer. Thus, higher
angular configurations can be achieved by not only angling
the fork at transfer but also by picking up the food item at an
angle in the first place, thus compounding the effect. Therefore
we added a third strategy combination which consists of
picking up the food item in an angled way and approaching
the face at 45°. We abbreviate these three combinations of
strategies with VS-HT (vertical skewering-horizontal transfer),
VS-AT (vertical skewering-angled transfer), and AS-AT (angled
skewering-angled transfer).

To test the second hypothesis, we also employed another
insight found by [20]: Some people skewered the food in
a way that would make it easy for a recipient to take a
bite without hitting the tines and therefore chose their bite
acquisition method to improve bite transfer. To analyze the
hypothesis with our system, we used SPNet to skewer a long
food item at its ends. We designed the study such that the robot
skewered the items at different ends and brought the food item
to the user. This procedure resulted in the tines being closer
or farther from the recipient during transfer.

To investigate the impact of these strategies on the the
ease of bite transfer, we performed a study with 25 human
participants from 18-37 years of age, under our organization’s
Institutional Review Board. 8 out of the 25 participants had
experience feeding other people, 2 out of 25 were fed as an
adult by someone else, and 7 out of 25 participants were
female. We presented the participants with plates of 2 or 3
food items which our feeding system skewered and brought
to their mouths autonomously using different manipulation
primitives. We asked the participants to take a bite and rate
how easy it was to take the bite off the fork, specifically if
they had to strain themselves or move in an uncomfortable
way. The recipients could either eat the food or bite it off
the fork and discard it. The robot used a different strategy for
each item on the plate and we required the participants to rank
these strategies with respect to each other. We randomized the
order in which the robot applied these different manipulation
primitives and used SPNet for all of them since it had the
highest acquisition success rate.

The study began by comparing the first 3 strategies: VS-HT,
VS-AT, and AS-AT (See Fig.7(b)). Our robot fed the human
users 2 plates of cantaloupes, carrots, and celeries with 1 food
item for each strategy per plate. We selected these items based
on their varied shapes and sizes.

Next, we evaluated the effect of the proximity of tines
during bite transfer by having the participants eat one plate
each with 2 carrots and 2 celeries using the vertical skewering
and angled transfer, VS-AT strategy but skewered either at the
near end or far end of the food item (see Fig.7(c)).

For each participant, we performed a total of 22 autonomous
feeding trials (3 angular strategies × 2 plates × 3 food types
+ 2 far-near strategies × 2 plates).

VIII. BITE TRANSFER RESULTS

For the ranked angular strategies, we analyzed the partic-
ipants’ ranking with the Friedman test [83] followed by a
Nemenyi post-hoc analysis [83]. On average, angled skew-
ering combined with angled transfer (AS-AT) resulted in
significantly easier bite transfer than vertical skewering with
horizontal transfer VS-HT (p < 0.001 with df = 22, α =
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Fig. 7: Humans feed using different transfer angles [20]. For ease of bite transfer, participants preferred manipulation primitives
for bite transfer that depended on primitives for bite acquisition. VS-AT: Vertical Skewering - Angled Transfer, AS-AT: Angled
Skewering - Angled Transfer, VS-HT: Vertical Skewering - Horizontal Transfer.

0.001, q = 6.6 > qcrit = 6.065) and vertical skewering
with angled transfer VS-AT (p < 0.001 with df = 22, α =
0.001, q = 7.9 > qcrit = 6.065) for long food items. Also, on
an average for the food items in our study, angled skewering
with angled transfer AS-AT makes a significant difference in
the ease of bite transfer compared to vertical skewering and
angled transfer VS-AT (p < 0.001 with df = 22, α =
0.001, q = 6.167 > qcrit = 6.065). Thus, how a food
item is skewered significantly impacts the bite transfer process.
Interestingly, on a per food item basis, this is particularly true
for celeries which were long in shape (p < 0.001 with df =
22, α = 0.001, q = 7.9 > qcrit = 6.065). For carrots, both
skewering and transfer strategies had an effect. For example,
comparison between VS-HT and AS-AT (p < 0.001 with df =
22, α = 0.001, q = 6.1 > qcrit = 6.065), as well as between
VS-AT and AS-AT (p < 0.001 with df = 22, α = 0.001, q =
7.9 > qcrit = 6.065) resulted in significant differences.
However, for smaller and more cubic-like shaped cantaloupes,
the current experiment did not find statistically significant
differences between any of three manipulation primitives. This
implies that for small food items, a simple strategy like vertical
skewering with horizontal transfer may work quite well.

For the far-near strategies, we implemented Wilcoxon’s
Signed Rank test [83] to analyze the participants’ ranking.
On average, participants preferred to bite when the tines were
distal compared to proximal for both carrots and celeries with
statistical significance (p < 0.001 with α = 0.001, z =
5.35 > zcrit = 3.291) with continuity correction. This implies
that for long food items the choice of proximal vs. distal
positioning of the tines affected the ease of bite transfer, and
thus where a food item is skewered during bite acquisition
significantly impacts the ease of bite transfer.

IX. DISCUSSION

Assistive feeding is a problem with many facets. We saw
multiple strategies in which bite acquisition significantly af-
fected the ease of bite transfer. There could be other factors
that may influence the perception of ease of bite transfer
such as how close or far the food item is from the mouth or
personal preferences for a food item. Responses to a qualitative
question about the reasoning behind their ranking revealed
some interesting insights. Some participants mentioned that

for certain strategies taking the bite off the fork was difficult
because of the curvature of the fork tines. This leads us to
think that not only is the relative positioning between the
food item and the mouth crucial but also factors that affect
the physical interaction between the fork, food item, and the
mouth are important. As found by Herlant [19], good food
transfer timing is a crucial component of assistive feeding.
While we developed a module to detect open and closed mouth
states, a proper solution including the nuances of social dining
falls outside the scope of this paper.

Note, the need to adapt the robot’s motion to the user’s
face movement as well as the eye-in-hand camera system,
which is inherently different from human body anatomy,
necessitates the need for the robot to be positioned in cer-
tain pre-determined configurations during feeding to properly
perceive the environment. However, the current system can
be improved in future with more autonomous capabilities for
realistic feeding situations such as generalizing perception to
unseen food items, automated categorization of manipulation
primitives based on food item characteristics, as well as using
learning from demonstration techniques for annotations.

It is also important to note that this study was conducted
with able-bodied participants who were able to move their
neck slightly to be able to take a bite off the fork. This is
however not a limiting factor for most of the target population
because according to our interactions with occupational ther-
apists and therapeutic recreational specialists with expertise
in feeding, people with bilateral amputations and spinal cord
injury have the necessary neck movement to be able to use
the system as it is. However, note that our system assumes
no cognitive or swallowing impairment on the user’s side.
Another qualitative study by Martinsen et al. [14] on caregiver-
assisted feeding found that the objective of the interaction was
to replicate a meal experience from before the disability. This
also supports the premise of using insights learned from able-
bodied peoples eating patterns to inform the way an assistive
feeding device should behave [19]. In the future, we plan
to investigate the capabilities of the system for both people
with disabilities with similar range of neck movements as well
as people with more severe motor impairments and no neck
movements where the system would need to bring the food
item close enough to actually touch the mouth.
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