Under review as a conference paper at ICLR 2024

COCO-PERIPH:
BRIDGING THE GAP BETWEEN HUMAN AND MACHINE
PERCEPTION IN THE PERIPHERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating deep neural networks (DNNs) as models of human perception has
given rich insights into both human visual processing and representational prop-
erties of DNNs. We extend this work by analyzing how well DNNs perform com-
pared to humans when constrained by peripheral vision — which limits human per-
formance on a variety of tasks, but also benefits the visual system significantly. We
evaluate this by (1) modifying the texture tiling model (TTM), a well tested model
of peripheral vision, to be more flexibly used with DNNs, (2) generating a large
dataset which we call COCO-Periph that contains images transformed to capture
the information available in human peripheral vision, and (3) comparing DNNs
to humans at peripheral object detection using a psychophysics experiment. Our
results show that common DNNs underperform at object detection compared to
humans when simulating peripheral vision with TTM. Training on COCO-Periph
begins to reduce the gap between human and DNN performance and leads to small
increases in corruption robustness, but DNNs still struggle to capture human-like
sensitivity to peripheral clutter. Our work brings us closer to accurately modeling
human vision, and paves the way for DNNs to mimic and sometimes benefit from
properties of human visual processing.

1 INTRODUCTION

Deep neural networks (DNNs) have shown great promise as models of human visual perception, en-
abling the prediction of both neural response patterns (Yamins et al.,2014; Rajalingham et al., 2015;
Yamins & DiCarlol 20165 Kell & McDermott, 2019) and aspects of visual task performance (Yamins
et al.l 2014; |Geirhos et al., 2018; Mehrer et al., 2021). However, there are still critical differences
in how computer vision DNNs process information compared to humans (Rajalingham et al., 2015}
Geirhos et al., [2020; 'Wichmann & Geirhos}, [2023). These differences are evident in psychophysical
experiments (Berardino et al., 2017} Feather et al., 2019; |[Hénaff et al.,[2019};|Harrington et al.| [2022)
and adversarial examples (Szegedy et al.||2013; [Elsayed et al., 2018} Ilyas et al.,|2019). One differ-
ence between DNNs and humans that has gained recent interest is the existence of peripheral vision
in humans. Peripheral vision describes the process in which human vision represents the world with
decreasing fidelity at greater eccentricities, i.e. farther from the point of fixation. Over 99% of the
human visual field is represented by peripheral vision. While it is thought to be a mechanism for
dealing with capacity limits from the size of the optic nerve and visual cortex, peripheral vision has
also been shown to serve as a critical determinant of human performance for a wide range of visual
tasks (Whitney & Levi, |2011; Rosenholtz, 2016).

The benefits of modeling peripheral vision in DNNSs are two-fold. For applications that require pre-
dicting or mimicking human performance on a visual task — like predicting if a driver will detect
a hazard — DNNs in computer vision must capture aspects of human peripheral vision that drive
task performance. For applications in representation learning, peripheral vision represents a bio-
logical strategy that presumably evolved to efficiently and robustly solve a variety of tasks in spite
of information loss due to significant constraints on the system. DNNs might benefit from these
representational strategies in areas such as robustness, where a link between adversarial robustness
and human visual representations has already been seen (Engstrom et al., 2019; [Ilyas et al., 2019;
Harrington & Dezal 2022).
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Figure 1: The COCO-Periph Dataset contains MS-COCO images that have been transformed to
visualize the loss of information in human peripheral vision due to visual crowding (not just acuity
loss) at various eccentricities. This loss of visual information causes difficulties for computer vision
systems: models such as Faster-RCNN (shown here) perform poorly at tasks like object detection as
simulated eccentricity increases. In contrast, human performance is known to fail gracefully, raising
the question: how can we close this gap?

Accurately modeling peripheral vision in DNNs, however, is challenging. Current DNN approaches
are disjoint and a number of them require specialized architectures (Jonnalagadda et all, 2021} [Min|
2022), only model a loss of resolution (Pramod et al.| [2022) — which is insufficient to predict
effects of peripheral vision like crowding (Balas et al., 2009), or rely on style transfer approaches
(Deza & Konkle| [2020) which are not as well tested as statistical models. In human vision science,
peripheral vision has been well-modeled with multi-scale pyramid-based image transformations that,
rather than predicting performance on a particular task, instead output images transformed to rep-
resent the information available in peripheral vision. Humans viewing these transformed images
perform visual tasks with an accuracy that well predicts human performance while fixating the orig-
inal images (Ehinger & Rosenholtz, 2016} [Rosenholtz et al., 2012b}; [Freeman & Simoncelli, 201T).

In this work, we leverage one of these pyramid-based peripheral vision models, the Texture Tiling
Model (TTM) (Rosenholtz et al., 2012b)), to simulate peripheral vision in a variety of DNN models.
We do so by modifying TTM to use a uniform rather than a foveated pooling operation (uniform-
TTM); this allows us to model a single point in the periphery without having to choose a fixation.
We use uniform TTM to render a popular object dataset, MS-COCO 2014), to simulate
peripheral vision at the input level for DNNs — we call the transformed dataset COCO-Periph. To
understand the effect that peripheral vision-like inputs have on DNN performance, we perform a
human psychophysics experiment measuring object detection in the periphery, and then design a
machine psychophysics experiment to test DNNs on the same task. We compare detection results
between humans and DNNs and show a gap in performance between the two. This gap can be
reduced by training on COCO-Periph, but we still see noticeable differences in sensitivity to clutter.

The COCO-Periph dataset is one of the largest datasets for studying peripheral vision in DNNs,
and our analysis represents one of the broadest evaluations of peripheral vision in modern DNNs
to date. COCO-Periph itself is a significant contribution, representing over 6 months of compute
time that makes it computationally feasible to test TTM in DNNs and standardizes the evaluation
of peripheral vision in computer vision. We publicly release our COCO-Periph dataset, along with
code for uniform TTM and the psychophysics analyses at [URL] to enable further research into
human and machine perception in the periphery — paving the way for DNNs to mimic and benefit
from properties of human visual processing.

2 BACKGROUND AND RELATED WORK

2.1 PERIPHERAL VISION

Often misunderstood as a simple loss of acuity, peripheral vision in reality involves much more
complex processes. While the retina does display a progressive reduction of photoreceptor density
as a function of eccentricity, most of the information loss in peripheral vision occurs downstream
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in the visual cortex. The phenomenon of visual crowding exemplifies this where human peripheral
performance degrades in the face of clutter from the spacing of nearby objects and the features of
local image regions (Vater et al., [2022)).

Peripheral vision has been successfully modeled as a loss of information in representation space
(Rosenholtz et al.,2012b; |[Freeman & Simoncelli, [2011)), where models like TTM (Rosenholtz et al.}
2012b;|Rosenholtz, [2020) perform a texture-processing-like computation of local summary statistics
within pooling regions that grow with eccentricity and tile the visual field. TTM relies on the Portilla
and Simoncelli statistic set (Portilla & Simoncelli, 2000), very similar to the Freeman and Simoncelli
model (Freeman & Simoncellil 2011). Some more recent models evaluate different statistic and
show strong performance on metameric tasks (Deza et al.,|2017; [Wallis et al., 2019} |Broderick et al.,
2023). Among these, TTM is one of the only to be validated against human performance on an
extensive number of behavioral tasks, including peripheral object recognition, visual search, and
a variety of scene perception tasks (Ehinger & Rosenholtzl 2016). Although TTM is powerful, the
computational requirements of synthesizing TTM transforms make it impractical to use online at the
large scale of DNNs. Synthesizing a single TTM transform image can take 5+ hours. This has been
addressed in part by (Brown et al.| [2021)), which modified the optimization process for transform
generation with gradient descent, allowing GPU-optimization, and (Deza et al., 2017) and (Wallis
et al., |2017) which incorporated style-transfer into the procedure. However, these models are not
as well validated on human performance as TTM, and most are still not fast enough to use during
DNN training. To facilitate large experiments, we create COCO-Periph — a large-scale dataset that
pre-computes these images with a more flexible fixation scheme.

2.2 HUMAN-INSPIRED DEEP NEURAL NETWORKS

Extensive work has been done in creating biologically-inspired object recognition models. A number
of these models have been shown to impart representational benefits such as robustness to occlusion
(Deza & Konkle, 2020), generalization across scale (Zhang et al. [2019; [Han et al.| |2020), and
adversarial robustness (Vuyyuru et al.,|2020; [Dapello et al., 2021;|Guo et al., 2022). It has also been
suggested that adversarial training alone can improve human perceptual alignment (Dapello et al.,
2020; [Feather et al., 2022 [Ilyas et al., 2019 Harrington & Deza, [2022)). Research in this domain
overall has greatly benefited from DNN benchmarks such as BrainScore (Schrimpf et al., [2020) that
compare models to humans using neural and behavioral data.

Despite clear benefits on recognition tasks, modeling human vision is less explored in more complex
tasks like object detection. One exception to this includes FoveaBox which takes inspiration from
foveation in human vision to simultaneously predict object position and boundaries without anchors
(Kong et al.| [2020). Additionally, training on a stylized version of COCO (Michaelis et al., 2019)
(much like the stylized ImageNet work which reduced texture bias and increased shape bias in
recognition models (Geirhos et al.| [2018)) was shown to increase corruption robustness in object
detection DNNs. Peripheral vision, however, is thought to use texture-like representations, and is
critically involved in tasks where context matters like detection. Testing peripheral vision in tasks
like detection is key to understanding the benefits and trade-offs of modeling human vision in DNNs.

3 UNIFORM TEXTURE TILING MODEL

To model critical aspects of peripheral vision without assuming a fixation point, we use a modified
version of TTM that relies on uniform, rather than foveated pooling. In original TTM (Rosenholtz,
2020), pooling regions grow linearly with eccentricity, but for uniform TTM, we fix the pooling
region size to match the ring of pooling regions at a single eccentricity (see Appendix Sec. [A.T)). For
example, we set the pooling region size to correspond to 15° eccentricity, as in Figure [2] With that
uniform pooling, we can create images that show the information available as if each pooling region
appeared at the same eccentricity. Though this represents an impossible situation, it provides two
practical advantages: (1) the ability to shift the modeled fixation by stitching together pre-computed
uniformly transformed images to create pseudo-foveated images (see Appendix Sec. [A.2)), and (2)
to evaluate both human and machine performance for an entire image at a single eccentricity.
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Figure 2: Original vs. Uniform Texture Tiling Model (TTM). An original image (a) can be pro-
cessed using the Original TTM (b) which is foveated, meaning that information is pooled in regions
that grow farther from an assumed fixation point (green dot). To create our dataset we adapt TTM
to use a fixed uniform pooling region size everywhere in the image, shown in (c) at 15° eccentricity.
We can efficiently stitch together multiple uniform TTM images from our pre-computed dataset to
recreate the foveated effect (d).

4 COCO-PERIPH DATASET

We apply Uniform TTM to the COCO dataset, creating COCO-Periph which contains images trans-
formed like peripheral vision. COCO-Periph allows us to use the highly tested Texture Tiling as an
input pre-processing step to train and evaluate DNNs. In COCO-Periph, we rendered images that
capture the amount of information available to humans at (5°,10°,15°,20°) in the periphery, as-
suming 16 pixels per degree. (For reference, the width of a full-screen image on a laptop at a typical
viewing distance subtends 20° — 40°). COCO-Periph contains the entire COCO 2017 validation
and test set, and over 74K, 117K, 118K, and 97K of the 118K total training images transformed to
model 5°,10°,15°, and 20° of eccentricity, respectively.

Measuring object detection performance on COCO-Periph using the original COCO ground truth
labels, we see in Table [T] for a variety of pre-trained models that average precision (AP) degrades
with distance in the periphery. De-noising models, which have the highest baseline scores, perform
the best overall compared to the other architectures measured. Performance likely degrades because
COCO-Periph is potentially out of distribution for models, and at farther eccentricities, objects have
a greater potential to move due to the larger pooling regions used in uniform TTM. To understand
how the degradation in performance we see compares to human vision, we conduct a psychophysics
experiment in Section[3] In the psychophysics analysis, we address box localization issues (see Sec
and train a Faster-RCNN on COCO-Periph (See Table [I] bottom row and Sec. [7.1).

5 HUMAN PSYCHOPHYSICS: OBJECT DETECTION IN THE PERIPHERY

To compare DNN performance to humans in the periphery, we first collected human psychophysics
data on an object detection task. We choose a detection rather than a recognition task because
humans can guess object identity quite well based on context alone, i.e. even when the object itself
is occluded (Wijntjes & Rosenholtz, 2018). In our detection task, we present two images on every
trial, identical except for the presence or absence of a particular object, and ask a human subject to
judge which of the two images contained a target object. For the object present images, we choose
26 images from the COCO validation set that have one instance of an object. For the absent image,
we remove that object via in-painting (see Appendix Sec. [A.3.1)). We selected images with a variety
of small to medium sized objects in different scenes.

In each trial, 10 eye-tracked subjects fixated at a specified location either 5°,10°, 15°, or 20° away
from the target object, and viewed an object present and absent image in random order. Subjects
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Model Arch AP0° AP5° AP10° AP15° AP20°
DINO-FocalNet-Large (Zhang et al., 2022) 584  51.6 44.4 20.2 15.0

DINO-Swin-Tiny (Zhang et al.| 2022 51.3 44.0 34.1 11.1 7.6
Detr-R50 (Carion et al., 2020 ‘ 42.0 352 25.1 6.9 4.5

RetinaNet-R50 (Lin et al.,[2017) 38.7 31.5 22.1 6.9 5.0
FoveaBox 2020 40.4 33.2 23.4 7.5 53
Faster-RCNN-XT10T (R I 39.6 32.6 21.8 6.6 4.7
Faster-RCNN-R50 (Ren et al., 201 36.7 294 19.9 59 4.2
All ° Train Faster-RCNN-R50 33.8 30.5 28.1 15.8 12.7
All ° FT Faster-RCNN-R50 36.1 31.8 27.7 13.9 10.8

Table 1: Average Precision (AP) on COCO and COCO-Periph Validation Set. 0° refers to per-
formance on unchanged MS-COCO data. The other AP values correspond to different eccentricities
of uniform TTM transform images.

were asked to report which image contained the specified object in a two-interval-forced-choice
paradigm (2IFC), viewing 10 present/absent image pairs at each eccentricity. As a control, we
also tested subjects on the same task but on uniform TTM transformed images. Details on these
experimental setups can be found in the Appendix Sec.[A.3.2][A3.3] and[A:4]

We find overall that human object detection performance always degrades progressively with in-
creasing eccentricity (Figure 3] blue line). Detection ability is consistently strong at 5°. However,
for some images observers reach near chance performance at 20° eccentricity, whereas a few image
pairs have objects that are easily detected at all eccentricities. Often, high color contrast between
the object and its background and a lack of clutter from other nearby objects made target objects
more easily detected in the periphery, leading to better performance, which is consistent with the
crowding literature. See Appendix Sec. [A.4.1]for per-image human accuracy.

6 MACHINE PSYCHOPHYSICS
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Figure 3: Example Easy Object Detection. (a) Original image with target object bounding box,
and (b) TTM transform for 15° (240 pixels) with extended bounding box (used to perform machine
object detection task). (¢) Human accuracy for peripheral viewing of example image averaged over
all subjects with error bars reporting SEM (blue), compared with accuracy on TTM image for a pre-
trained (pink) and trained on COCO-Periph (gray) Faster RCNN R50 model, and a DINO FocalNet
model (green). Psychometric curves are fit with an inverse cumulative normal distribution.

To compare human and DNN performance, we have DNN object detection models perform the
same two-alternative/interval forced choice task given to human subjects. We do this by first using
uniform TTM to generate 10 different peripheral transform images for each of the object present
and absent images, at each of the 4 tested eccentricities (5°,10°,15°,20°). Because TTM is a
stochastic model that is under-constrained compared to image pixel values, each of the 10 TTM
transform images differ from one another. This gives us 100 unique present/absent transform pairs
for each original image/eccentricity combination. For each pairing, we input a transformed image
to the object detection model with low detection threshold (0.01) to get proposed bounding boxes
and object scores. We then determine if the proposed box overlaps with a padded ground truth box
of the target object; we pad the ground truth box by half the width of a pooling region to account for
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Figure 4: Detection Accuracy and Critical Eccentricity for Humans and DNNs averaged over
all images. Accuracy averaged across images and over subjects for human data is reported by
eccentricity (left). We show data for humans viewing original images (Human), and humans viewing
uniform TTM (uTTM) images (hatched blue bars: 3 naive subjects, 5 all subjects). To this data, we
fit psychometric functions. We summarize performance across eccentricity as the critical fall-off
point p (right). In both plots, we observe a noticeable drop in performance near large eccentricities.

position uncertainty introduced in human peripheral vision and TTM (see Figure [3a and b for an
example of 15° padding). To measure how strongly the DNN predicts there is an object in padded
box region, we sum the total scores of all objects (regardless of predicted class) that overlap at least
75 percent (intersection of area with respect to the proposed box). We score the model as correct on
a trial if the total object scores for the present image are greater than the absent. We score incorrect
if the absent is greater and give a half score if present and absent are equal. We take the average
over all the present-absent pairing accuracies for each eccentricity. See Appendix Sec. [AZ3] for
pseudo-code and Figure [T4]for the general workflow.

To keep the comparison between DNNs and humans fair, we do not enforce that the model must
predict the correct object identity when scoring predictions at each trial. Because we use a forced-
choice paradigm, humans subjects can give a correct response by simply detecting the presence of
any object at the approximate right location, rather the specified one. Although we specify an object
class to human subjects, this strategy is likely to happen when peripheral information is poor.

7 HUMAN VS MACHINE PERFORMANCE AT PERIPHERAL OBJECT
DETECTION

Like the human observers, DNNs’ response accuracies are highly image-dependent, with some pairs
resulting in poor performance for all models. While human performance falls gradually for most im-
ages, DNN object detectors can often retain good accuracy for the 5° eccentricity TTM transforms,
but many show sharp falloffs in accuracy to chance performance soon after (See Figure [3] for a
representative example).

To quantitatively compare performance, we fit both human and DNN performance data across eccen-
tricity to a psychometric function for each image. We use a reverse cumulative Gaussian distribution
which determines the critical (75% correct, halfway between perfect and chance performance) ec-
centricity by the mean of the distribution (1), and the performance falloff rate by (o)

2020).

For all images tested, humans outperform all object detection models, with critical thresholds more
than 5° greater than detection models (Figure f). We find generally weak correlations between
between DNN and human performance for critical eccentricity (1) (see Appendix Fig. [I7). Among
the pre-trained models, DINO detectors have the closest critical eccentricity to humans and have the
strongest correlation.
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Figure 5: Detection vs Recognition. (a) Fine-tuning and training on COCO-Periph increases base-
line Faster-RCNN-R50 performance at the object detection psychophysics task. (b) Machine psy-
chophysics performance on recognition. We pass the classification head of Faster-RCNN models
the groundtruth bounding box and score performance based on recognition in that region. Data is
averaged over all experiment images.

7.1 TRAINING ON COCO-PERIPH

To reduce the gap between human and DNN performance, we fine-tune and train a ResNet-50 back-
bone Faster-RCNN-FPN detection model on COCO-Periph (See Appendix Sec. [A.8]for AP results
and training details, and Appendix Fig. 22| for bounding box examples). For fine-tuning (plotted as
All° FT RCNN) we start from detectron2’s (Wu et al.,[2019) pre-trained model and use a 3x iteration
scheme with a lowered learning rate. When training from scratch (plotted as All° FT RCNN), we
use the default 3x training configuration in detectron2.

We find that training a model from scratch with all eccentricities in COCO-Periph plus original
COCO images (0°) produces the best performing model in the psychophysics evaluation (see Fig-
ure ). The model trained with COCO-Periph has a critical eccentricity of nearly 5° greater than
the pre-trained baseline (Figure E[, E}a) The fine-tuned model, however, under-performs the trained
model which we suspect is because of the lowered learning rate during training and a decrease in
baseline average precision. In addition, we report that DNN psychophysics performance is similar
on uniform, original TTM, and pseudofoveated TTM (see Appendix Fig. [I5] [T6).

To better understand the impact training on COCO-Periph has on the psychophysics performance,
we additionally evaluate object recognition in the machine psychophysics (Figure [5). We give the
classification head of Faster-RCNN-R50 models the padded ground truth bounding box of the target
object. We then score models based on which image, present or absent, has the highest classification
probability for the target object. Unlike the detection version of the task, we find that training
from scratch performs worse than baseline. This could indicate the trained model improved more at
localizing objects rather identifying them in the periphery.

Model mAP, severity=1 severity=5 brightness elastic transform
Faster-RCNN 17.34 25.08 9.57 28.29 11.94
All © FineTune 17.47 24.80 9.84 27.31 14.48
All ° Train 16.72 23.28 9.88 25.31 15.02

Table 2: Corruption Robustness Average Precision (mAP.) on COCO Validation Set. All mod-
els are Faster-RCNN ResNet50 FPN architecture (Ren et al., 2015). (mAP,) refers to AP over 15
corruptions at 5 severity levels (Michaelis et al., 2019). Columns (severity= 1) and (severity= 5)
report AP over all corruptions at a single severity level. Last two columns (brightness, elastic) report
AP for the worst and best performing corruption compared to baseline.

In order to see if there were benefits from training on COCO-Periph beyond getting closer to human
performance, we evaluated trained models for corruption robustness using the COCO-C suite of
corruptions (Michaelis et al.| [2019). We find that corruption robustness improves most noticeably
for geometric transformations like ‘glass blur’ and ‘elastic transform’. Interestingly, performance is
slightly lower than baseline for noise-like corruptions and ones that change contrast (See Appendix
Fig. [26). Averaged over all corruptions, average precision is slightly higher for the model trained
from scratch on COCO-Periph than baseline.
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Figure 6: Object Size and Clutter. a: Object size predicts critical eccentricity for human observers
(blue), but remains low for large objects in all object detection models tested. b: In humans (blue),
critical eccentricity is highest for images with few objects, with performance decreasing as images
become more crowded with objects. This relationship is not observed for tested object detection
models, where critical eccentricities remain low.

7.2 EFFECTS OF OBJECT SI1ZE AND CLUTTER

Since both human and DNN performance strongly varied by image, we looked for image properties
that might predict performance, and asked if these had similar effects for humans and computer
vision DNNs. Examining critical eccentricity as a function of object size, humans have a higher
critical eccentricity for larger objects; that is, human performance increases with progressively larger
target objects (Figure [6). Surprisingly, this relationship does not appear to hold for any object
detection model, even the ones trained on COCO-Periph which have higher AP-large and AP-small
than baseline on TTM transform images (see Appendix Sec. [A-8.).

Human object detection performance in the periphery is known to be strongly mediated by the
amount of clutter. One measure of clutter is the number of objects near the target. To test if this
holds true for object detection models in our experiment, we used the number of ground truth COCO
annotations in the image as a proxy for clutter (note clutter can be present in specific sub-regions
of an image, and that COCO annotations do not label all objects in many scenes). As expected,
human performance decreases as images become more cluttered (Figure [6). Performance in object
detection models does not show a strong relationship with clutter. Interestingly, this is true even
for models trained on COCO-Periph, which should reflect the degrading effect of clutter on the
peripheral representation, according to TTM.

8 DISCUSSION

To evaluate the effects of peripheral vision on DNNs, we modified a summary statistic model of
peripheral vision (TTM) to be more flexibly pre-computed as an image transformation. We then
rendered a large subset of the COCO dataset (COCO-Periph) to model 5°, 10°, 15°, and 20° degrees
in the periphery to feed into object detection DNNs. To compare performance against humans, we
collected human data on detection in the periphery and measured performance against DNNs.

8.1 UNDERSTANDING DIFFERENCES IN HUMAN AND DNN PERFORMANCE

Our results expose a gap in performance between humans and computer vision DNNs in the periph-
ery. When we restrict DNNs to input matching human peripheral vision, detection performance
matches humans for some models at low eccentricities, but quickly becomes brittle, degrading
sharply with eccentricity, whereas human performance falls off smoothly. What underlies the noted
differences in performance and could explain this? Can we rule out limitations of TTM itself? While
TTM is widely-tested, like all other peripheral vision models, it sometimes under-predicts human
performance, and validation has primarily been in greyscale images (although TTM-like models
have been tested for color under the metamerism task (Brown et al.,[2021)), and see (Jagadeesh &
Gardner, |2022)). We argue that while these limitations of TTM may put a ceiling on model perfor-
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mance, TTM uses the same statistics at all eccentricities, which cannot explain the sharp falloff in
performance at high eccentricities as compared to humans. This along with differences in perfor-
mance between models indicate that gaps between human and machine performance are unlikely to
be explained by stimuli alone. Furthermore, we note multiple aspects in which we aimed to conser-
vatively design our machine psychophysics experiment, making the comparison between humans
and machine as fair as possible, and the task as easy as possible for models to perform well on (See
Section[A.3). Finally, and most notably, we validate in a control experiment that human detection
performance on TTM images closely follows performance on original images (Fig. ). Thus, it is
unlikely that DNNs were disadvantaged compared to humans in terms of the amount of information
available.

8.2 EFFECT OF PERIPHERAL TRAINING

Training on the peripheral images in COCO-Periph reduces the gap in object detection performance.
Interestingly, we see evidence that training helps more with object localization rather than identi-
fication (Figure [5) — this may explain why models trained on COCO-Periph do better on the psy-
chophysics tasks than some models that have a higher AP on COCO-Periph. One role of peripheral
vision is to guide where to fixate next, and favoring localization over identification aligns with the
goal of guiding fixation. Despite these improvements, we observe that models trained on COCO-
Periph still exhibit drops in performance that are greater than humans. This suggests that the be-
havior we see is not solely attributable to a domain shift. The long-term purpose of our dataset and
experiments are to build new ways of matching human behavior beyond fine-tuning alone. Our re-
sults imply that task formulation is a critical area to explore in aligning DNNs and humans. TTM as
a model suggests that one general representation can explain behavior on a variety of visual tasks.
We believe an important future direction in bridging the gap between humans and DNNSs is to opti-
mize for generalization across a variety of tasks — rather than maximizing for accuracy on a single
task. Current benchmarks in computer vision do not encourage this, and we hope that our dataset
and experiments can facilitate research in this direction.

Training on COCO-Periph also increases robustness to geometric corruptions, but decreases ro-
bustness to noise corruptions. Although the texture-like representations of peripheral vision may
contribute to human robustness to adversarial noise (Harrington & Dezal, 2022)), the TTM-transform
itself more closely resembles geometric corruptions and this is evident in our robustness evaluations.
While we do not evaluate the adversarial robustness of our trained models, it appears that more work
is needed to fully understand the relationship between peripheral vision and robustness.

8.3 COCO-PERIPH — A NEW BENCHMARK WITH REAL-WORLD APPLICATIONS

A key contribution of our work is COCO-Periph, one of the first large scale datasets for study-
ing peripheral vision in DNNs. We present an application of COCO-Periph in object detection,
but COCO-Periph provides a unified and flexible framework for modeling peripheral vision in any
modern DNN. By building the dataset on COCO, peripheral vision can be evaluated for the first time
on tasks that go beyond simple crowding measures (Volokitin et al.l [2017; [Lonngvist et al.| [2020)
and object/scene recognition (Deza & Konkle| |2020; Jonnalagadda et al., [202 1} |Pramod et al., 2022}
Min et al.} |2022). We present COCO-Periph, along with our psychophysics experiment, as a tool to
the community to build DNNs that can predict human performance and benefit from properties of
human vision.

Peripheral vision is useful to model and predict because plays a key role in guiding visual attention in
humans, enabling fast, efficient detection of features and motion over a wide visual field. Peripheral
representations in machine learning give performance boosts for object recognition (Pramod et al.,
2022; Jonnalagadda et al., |2021; Min et al., [2022), and we extend this work to object detection.
Modeling this enables us to better predict human visual behavior. This has applications in many
areas including: (1) driver safety where we could predict if a person sees a hazard, (2) content
memorability where we could optimize images to capture attention, (3) UI/UX to create displays
that easy to view, and (4) foveated rendering, and (5) compression where peripheral vision could
help models perform under reduced visual information.
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9 ETHICS STATEMENT

Our study contributes to research modeling human visual behavior. Although we do not achieve
human level performance, potential harms of such a system could include difficulty distinguishing
Al from humans and tracking human attention patterns. Reducing the harm of both these risks
could be achieved through watermarking or other signatures to make it clear when a model is being
used. Regarding our human subject experiment, all participants provided informed consent prior
to participation, in compliance with the Common Rule (45 CFR 46). This study was assessed as
exempt from review by an Institutional Review Board, pursuant to 45 CFR 46.101(b)(2). There were
no risks or discomforts associated with the study, beyond what is normally expected using a standard
computer or video game. The eye tracker used was non-invasive and did not require special contact
lenses. To minimize visual and motor fatigue, participants were given breaks every 15 minutes and
were informed that they could exit the experiment at any point for any reason. All participant data
was anonymized and kept in a locked room under password protection. See Appendix section[A.3.2]
for for further details.
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A APPENDIX

A.1 UNIFORM TTM METHODS

Original TTM Uniform TTM

Figure 7: Pooling Regions in Original and Uniform Texture Tiling Models (TTM). Original
TTM (Rosenholiz et al., 2012a) is foveated, so its pooling regions are small around the fixation point
and grow farther from the fixation. We adapt TTM to use a fixed pooling region size everywhere in
the image (Uniform TTM). The size is determined by the distance in the periphery being modeled.

In the original TTM model, the pooling region size is determined by a pooling rate, r, and a distance
from the fovea, d. For the uniform version, we fix d for a certain eccentricity rather than varying it
like the original model. We set the overlap between pooling regions to be 60%, and we arrange the
uniform pooling regions in a rhombic lattice to make it as close as possible to original TTM. We use
the same synthesis procedure as original TTM (matching statistics like those defined in
for each pooling region iteratively from noise). The uniform TTM transforms take
between 2 — 3 hours to synthesize on 1 CPU core (compared to the original TTM transforms, which
take 6 hours on 1 core). Closer eccentricities like 5° take longer to run than large ones because the
pooling region size is small. For COCO-Periph, we create uniform TTM transforms for 5,10,15, or
20°. For all TTM transforms, we assume that there are 16 pixels per degree, which is standard for
original TTM.

When changing to uniform pooling, we also change the ordering of pooling region optimization from
foveated TTM. Foveated TTM alternates spiraling from fovea to edge of periphery and back. This
caused artifacts in uniformly-tiled TTM. Therefore, we opted for a randomly ordered optimization
of the pooling regions, eliminating the optimization artifacts.

A.2 PSEUDO-FOVEATION

Using the uniform TTM transforms, one can quickly simulate a fixation anywhere in an image,
essentially generating a foveated TTM transform at low computational cost. This has been done
previously for blur (Perry & Geisler], 2002} Geisler & Perry}, 2002). We call the process pseudo-
foveation. To create pseudo-foveated images, we stitch together uniform TTM transforms rendered
at multiple eccentricities (Figure[8). For the fovea, we insert a circle crop of the original image. Then
we add cropped rings from the uniform TTM transforms, centering each ring at the eccentricity it
was rendered at (5° degree TTM transform is centered at 5° eccentricity in the image). To reduce
edge effects, we linearly blend the border between uniform TTM transform crops; all borders are
weighted equally in the blending. With pre-computed transforms, this process of pseudo-foveation
takes only 50ms per image, more efficient at generating images than foveated TTM, making it fea-
sible to incorporate into the dataloading loop for training and testing DNNSs.
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Figure 8: Pseudo-Foveated images are created by stitching together Uniform TTM images.
Pseudo-foveation allows us to simulate a fixation at any point in an image. The top row shows TTM
transforms for a single eccentricity, and the bottom row shows two pseudo-foveated TTM transforms
for different fixation points.

A.3 HUMAN PSYCHOPHYSICS EXPERIMENT

A.3.1 PRESENT/ ABSENT EXPERIMENT IMAGE PAIRS

Original Mask In-Painted

Figure 9: Example of LaMa (Suvorov et al),2022) inpainting on COCO validation set image.
We use inpainting to create the object absent version of each image in the psychophysics experiment.
Here, the wine-glass is removed with few artifacts.

To create pairs of images where a given object was both present and absent, we used images from
the MS-COCO validation set (such that they would be novel to both humans
and to trained networks). We found images in landscape orientation where an object from a COCO
object category appeared and was labeled only once in the image, and the object was detected with
at least 50% confidence in the original image with the detectron2 [2019) object detection
model (faster_rcnn_r50_fpn). From this set, we hand-selected 26 images that spanned a range of
conditions that would affect the difficulty of the peripheral detection task (object identity and size,
variation in luminance and color contrast from background, amount of crowding around object,
etc). We then used the LaMa image in-painting model to inpaint the chosen object
2022), with a hand-drawn in-painting mask rather than the entire bounding box, as to avoid in-
painting nearby objects in crowded scenes. In addition to the in-painted images, for each COCO
image we also created a size matched 1/ f pink noise mask to eliminate any motion transients and
after-image effects during the experiment. These 26 image pairs were used for our object detection
experiments. Note that figures reflect 24 images, as 2 images were removed from analysis because
of poor psychometric curves fits (see Figures 20]and [21]to view the final image set).
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<1500 ms

Figure 10: Human psychophysics experiment trial. Subjects complete a 2IFC (2 interval forced
choice) task where they determine if a target object appears or disappears in a sequence. Red arrows
indicate the location of the target object. Subjects fixate at a cross that is placed at 5,10, 15 or 20°
away from the object.

A.3.2 EXPERIMENTAL SETUP

All participants provided informed consent prior to participation, in compliance with the Common
Rule (45 CFR 46), and this study was assessed as exempt from review by Institutional Review Board,
pursuant to 45 CFR 46.101(b)(2). Participants took approximately 2 hours to complete the study and
were paid a $40 Amazon gift card for their participation.

12 subjects participated in the human psychophysics experiment. We discarded the data from 2
subjects due to a computer malfunction and difficulty eye-tracking with a strong contact lens pre-
scription. The remaining subjects consisted of 4 Male, 5 Female, and 1 Non-binary subjects ranging
in age from 19 to 31. All had self-reported normal or corrected to normal visual acuity with contact
lenses, with no history of eye surgery. 2 subjects had corrective lenses for myopia with a correction
less than -1.25, but did not normally wear glasses or contacts (and did not during the experiment);
We included these subjects as the viewing distance was only 82cm.

Subjects were seated and head placed in the chinrest of an EyeLink 1000 in tower-mount configu-
ration. Subjects were 82 cm from a monitor screen, and their left eye position tracked. Nine-point
calibration was performed and validated to within 1 degree at each point. The experiment allowed
for fixation within 2 degrees, displaying a small dot on the screen for real-time feedback of measured
fixation location. Subjects were asked to pause the trial block to re-calibrate if measured fixation did
not reflect fixation location, or they had difficulty with the system recognizing their fixation.

A.3.3 EXPERIMENTAL PARADIGM

The experiment consisted of a 2IFC (two interval forced choice) task where subjects report which
out of two images contains a target object. Each subject saw 26 image pairs 10 times at 4 different
fixation locations (5, 10, 15,20°) away from a target object, where the fixation location was at the
vector computed from the target object location towards the center-point of the image. The order of
each presentation was randomized across the whole experiment. Each subject saw the present/absent
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Figure 11: Learning Over Experiment. Despite including practice trials before the experiment and
excluding correct/incorrect feedback during the experiment, human responses did exhibit a small
learning effect over the course of the experiment. Accuracy is plotted against x-axis ordered by the
number of times subject had seen any image at a given eccentricity. Bold lines show moving window
averaged accuracy over all subjects, and pale lines show individual subject’s data.

image pair 5 times present-first and 5 times absent-first. No correct/incorrect feedback was given to
the subject.

Subjects maintained fixation on a cross presented at either 5, 10, 15, or 20 degrees from the object
location, and were eye-tracked to ensure fixation was maintained within 2 degrees. Attention was
directed to the object location with latitude/longitude arrows. After presentation, subjects were given
the original COCO object category, and prompted to report which image contained the the object by
reporting if the object ‘appeared’ (was in the 2nd image but not the first) or disappeared’ (was in
the 1st image but not the second).

Each trial waited to begin until the subject fixated on a cross before proceeding. If the subject
broke fixation anytime an image or mask is shown, the trial was aborted and shuffled to the end of
experiment. Each image was shown for 400ms, and a size-matched pink noise mask was shown
after for 500ms to eliminate visible flicker of appearance of disappearance. Subjects were given
a response window of 1.5 seconds, and the image pair shuffled to the end of the experiment in a
time-out.

The experiment in total was 1040 trials long. Subjects were given a break every 150 trials, re-
calibrating after each break and before starting a new block. Before beginning the experiment,
subjects completed a practice round consisting of 15 trials of very easy image pairs. 2 subjects
needed to do the practice round a second time before they reported being comfortable with the task.
The images in the practice round were much larger than those in the actual experiment to make
the task easier (104 degrees). This may have contributed to a learning effect we observed in some
subjects where performance improves with the number of trials completed (Figure [11)).

A.4 HUMAN CONTROL EXPERIMENT: MEASURING HUMAN PERFORMANCE ON UNIFORM
TTM IMAGES

To rule out the hypothesis that DNN under-performance could be due to TTM throwing away too
much information, we performed a control experiment measuring human detection performance on
uniform TTM images. Again, all participants were provided informed consent prior to participation.
This experiment consisted of 3 naive subjects and 2 expert subjects, 3 males, 2 females.

18



Under review as a conference paper at ICLR 2024

In this experiment, we used the same 2IFC task as the original image experiment. Instead of asking
participants to fixate a set distance away from a target object, participants were able to freely view
a Uniform TTM images simulating 5,10, 15, 20° viewing conditions. Images were presented in a
22 pixels per degree set-up, similar to the original experiment. To avoid a search task, we cued the
location of the target object before each trial. Stimulus, mask, and response timings were the same
as the original experiment (400ms, 500ms, 1.5s respectively). Like the original, the experiment was
1040 trials total, consisting of 26 image pairings shown for 4 eccentricities for 10 repetitions. 5 of
the repetitions showed object present images first and the other 5 showed object absent first. For
these repetitions, we used 5 unique seeds of Uniform TTM images. Participants were given breaks
every 150 trials.

A.4.1 HUMAN PSYCHOPHYSICS RESULTS

Accuracy by Eccentriticy and Image for 10 Subjects

1.0
> 0.8 -
[®)
o
3
0.6 1
=
<
&
50-4‘ - 5
=
z = 10
0.2 - 15
. 20
0.0 -
DM~ DO OoOMNOMNOUWMWOMNS OO MDD MNMADDD0o
OO MuInmOoFooAdFT AN OMO- OO0 W0WnoWns o
nr~eHsFAMOoO™NWOOSsNntOoOunM™NtT Ao Moy
OO A0 0O A MM~ OMON O AANNS AW
OO0 A4 40 0O AA0OOMNMNVOAMNDNDOMNT
DO 0000000000 MMM NNNNMNMNMMS I 1w W
Qo0 Q0 QC OO0 Q0000000000000 Q0Q000Q
[=Neosololoslalolohslololaslaoleolaohslaolohaslaoleololaslaols]
[=l=Nelelclelslcl=R=N=R=l=lellelelelNelelelelelole)=ie]
[=NelaoNelNololNeoleNoelolNelNelNeNeleNelNolNelNelNoe oo No o NNl
[ I T o T e T e o Y o T e e Y o T e T e o Y o T e T Y o T e T e o T o T e o Y o Y e o
o000 0000000000000 000O0O0OO0OO0O

Figure 12: Per-Image Accuracy over all Subjects. When viewing original images at varying
eccentricities, human performance was very image-dependent, but decayed as eccentricity increased
for all images
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Figure 13: Per-Image Accuracy for UniformTTM images over all Subjects. When viewing uni-
form TTM images, human performance was also image-dependent, and also decayed as eccentricity
increased for all images.

Overall, subjects performed well at the task for most images, only reaching chance performance
for approximately 30% of the images (Figure . Images 000000009769 and 000000067616 were
removed from downstream analysis due to poor fitting of psychometric function. The difficulty
was extremely image-dependent - subjects reported similar feedback during debriefing that certain
images were extremely difficult and that they were guessing (though results show they often per-
formed better than chance, despite this), while other images were extremely easy. The hardest and
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IOA>0.75
present > absent — correct

-

() DNN

Original Images 10 uniform present, detection accuracy
TTM samples absent pair

Figure 14: Workflow for Machine Psychophysics Experiment. To simulate trials for detection
DNNs, we generate 10 uniform TTM transform images for each present/absent image in the ex-
periment. We run inference on the transforms and sum the scores of all box predictions that have
an intersection over area (IOA) greater than 0.75%. If the summed score is greater on the present
transform, the DNN is recorded as correct for that pairing. White boxes indicate the ground truth
and padded ground truth. Green boxes show predictions that meet the area condition, red do not.

easiest reported images tended to be those least and most crowded, and those with the most and least
background contrast, respectively. We see similar results for subjects viewing TTM images directly

(Figure [13).
A.5 MACHINE PSYCHOPHYSICS EXPERIMENT

We provide pseudo-code for the machine psychophysics procedure. We tried a variety of detection
criteria including, enforcing that predictions match the target category, enforcing the size the box
predictions to be no more than half or twice the size of the padded ground truth, and taking the
average score over all boxes that overlap the padded ground truth. We arrived at the summing
approach described in the Algorithm1 because it yielded the highest critical p scores and showed
similar trends in performance to the other approaches. For some models, there were 1-2 images for
which the psychometric fit did not converge, and therefore a value for 1« could not be determined.

In addition, a potential edge case in our DNN psychophysics setup is when the present image prob-
ability equals the absent image probability. We investigated how often this happened and found that
for the baseline R50-RCNN model, this represents only cases where the prediction probability is
zero (no predictions above the 1% threshold) in both the present and absent mongrel pair. Over
the image set, it occurs at least once over the 100 present/absent pairings, in 10/26 images, and for
each eccentricity (80°,160°,240°,320°), occurs (70,286,357,239) times over the 2600 pairings per
eccentricity, for a total of (2.7%,11%,13.7%,9.2%) overall. For the baseline RCNN, we observe that
aprob never equals pprob because the model had equivalent predictions in the present and absent
images. This only occurs when no objects are predicted in either image.

Making an apples to apples comparison between humans and machines, especially for object detec-
tion, is non-trivial; in formulating a psychophysics experiment for these models, which are trained
to perform very specific tasks, and report only specific information, design choices inherently affect
performance. We took a conservative approach, aiming to give models as much of an chance as
possible at performing on-par to their human counterparts. We note here various ways in which we
allowed models flexibility in the machine psychophysics experiment:

1. For the experiment, we chose images with present/absent objects for which models were
able to detect confidently for the original (0°) image.
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Algorithm 1 For each object present/absent image in the human experiment, we create 100 pairings
of uniform TTM transform images (P and A). We simulate trials by looking at the box predictions
(bozes) of a detection DNN for each pairing (p, a). We sum the total box scores that overlap with
the target object box at least 0.75% IOA (intersection over area). To determine this overlap, we take
the target object ground truth box (gt) and pad it with by half a pooling region (pr). If the total score
for the present image (pprob) is higher than the absent (aprob), we record the DNN model as having
a correct response. We average over all 100 pairings for final accuracy (acc).

procedure GETMODELACCURACY

acc =10 > initialize accuracy
for p,a € (P, A) do > loop through all present/absent pairings for one object
pprob = GetTargetDetectionScore(p, gt, pr) > get score for target object
aprob = GetTargetDetectionScore(a, gt, pr)
if pprob = aprob then acc = acc + 0.5 > get per trial accuracy
if pprob > aprob then acc = acc + 1
acc = acc = trials > take average over all trials
function GETTARGETDETECTIONSCORE(¢m, gt, pr)
gtx = gt + 0.5 x size(pr) > expand ground truth bounding box by half pooling region
boxes, scores = DNN(im) > get box proposals
prob =0 > initialize total score of overlapping proposals
for b, s € (boxes, scores) do
if ioa(gtx, b) > 0.75 then > check boxes that overlap expanded ground truth
prob = prob + s
return prob > return sum of overlapping scores

2. We utilized a padded bounding box when evaluating predictions, as TTM has location
invariance on the order of a pooling region width that can move objects in transformed
images. To compensate for this, we included any predictions with an IOA of ;0.75. In
addition, human subjects were primed with an object location, but were not restricted within
a specific region of the image to attend when making the present/absent determination.

3. We did not enforce models to match labels when performing the present/absent task, allow-
ing thee prediction of any object to be counted. Humans may have been able to perform
the present/absent task by simply reporting the present image as the one with more ’ob-
jectness’, without regard to label. We also found removing the label requirement improved
model performance.

4. We measured total probability as the sum of all prediction probabilities that overlapped the
bounding box, rather than the maximum. This was chosen for the same reason as (1), in that
humans could have used a similar metric. In addition, we found that summed probabilities
showed better model performance as opposed to maximum probabilities (Figure [27).

A.6 CONTROL EXPERIMENTS: ORIGINAL TTM, PSUEDO-FOVEATED, AND CORRELATION
WITH HUMAN PERFORMANCE

For our main results, we report DNN performance using uniform TTM images. As a control we
also run machine psychophysics performance on original TTM (Figures [T3) and pseudo-foveated
(Figure[16). We see similar trends in performance to Figure [ of the main text. We also look at the
correlation between the human and DNN performance across each image set in Figures [T8] [19).
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Figure 15: Critical Eccentricity using original TTM in the machine psychophysics.
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Figure 16: Critical Eccentricity using pseudo-foveated TTM in the machine psychophysics.
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Figure 17: Correlation between Human and Machine Critical Eccentricity using uniform TTM
in the machine psychophysics.
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Figure 18: Correlation between Human and Machine Critical Eccentricity using original TTM
in the machine psychophysics.
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Figure 19: Correlation between Human and Machine Critical Eccentricity using pseudo-
foveated TTM in the machine psychophysics.
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Present Experiment Images

Figure 20: Object Present Images. We selected 24 images from the original COCO validation set
to use in a psychophysics experiment measuring human object detection in the periphery.
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Absent Experiment Images

Figure 21: Object Absent Images. We in-painted out a target object from 24 original COCO

validation set images to use in the human object detection experiment.

A.7 FINE-TUNING OBJECT DETECTION MODELS

A.8 TRAINING PROCEDURE

Model Img | 5°UTTM 10° UTTM 15° UTTM 20° UTTM
0°FT Ecc 100% - - - -
5°FT Ecc 50% 50% - - -
10°FT Ecc | 50% - 50% - -
15°FT Ecc | 50% - - 50% -
20°FT Ecc | 50% - - - 50%
All°FT Ecc | 20% 20% 20% 20% 20%
AlI°TR Ecc | 20% 20% 20% 20% 20%

Table 3: Distribution of Original COCO training set images (Img) and varying eccentricity TTM
transform images (UTTM) used for fine-tuned Object detection models. Transform images are

derived from COCO training set images.

We fine-tuned the Faster R-CNN model from the Detectron2 library

(Wu_et_al} 2019)

(faster_rcnn_r50_fpn) using a mixture of original training images, and TTM transforms for varying
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eccentricities. In training, we selected 55,000 images from each of the COCO and COCO-Periph
training sets at each of the 4 eccentricities (5,10,15,20). We train an additional model on all eccen-
tricities using 55,000 images for each eccentricity (see Table 3] for image distributions; the model
fine-tuned on 5°, for example, is trained on 55,000 COCO images and 55,000 COCO-Periph 5°
transform images). All models are trained for 180,000 iterations starting from the weights of a pre-
trained R-CNN from m We set the solver to step at 120,000 and 160,000. We
set the base learning rate to 3 x 1 All other training parameters are the same R-CNN training

parameters in (Wu et al.,[2019) as the baseline model.

We also train one model from scratch on all eccentricities (55,000 images from each eccentricity as
well as 55,000 original COCO images). We use the same 3x training schedule provided in (Wuetal.,
for Faster RCNN R50 FPN models (starting from an ImageNet trained ResNet50 backbone,
training for 270,000 iters, 16 images per batch). Due to computational limiations, we do not fine-
tune or train any transformer-based object detection models; we only analyze their baseline models
which we obtain from the detrex library (detrex contributors} 2022). In the main text, we report
results for fine-tuning on all eccentricities since that model is the top performer.
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Figure 22: Training improves object detection on Uniform TTM images. Faster-RCNN R50 FPN
trained from scratch on peripherally transformed images retains more stable predictions with more
accurate bounding boxes as eccentricity increases when compared to the baseline Faster-RCNN R50
FPN model.
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A.8.1 AVERAGE PRECISION OVER ALL, SMALL, & LARGE BOUNDING BOXES

We evaluate all fine-tuned models on the COCO-Periph validation set and compare detection perfor-
mance for small and large bounding box objects. We find that fine-tuning on uniform TTM images
improves performance on the COCO-Periph validation set more for large objects than small objects.
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Figure 23: AP on COCO and COCO-Periph validation for COCO-Periph Trained Models. We
train and fine-tune Faster-RCNN-R50-FPN model on TTM transformed images from the COCO-
Periph train set, and show improvement in AP score on COCO-Periph validation, with minimal
reduction in performance on original COCO validation set. Finetune 0° is trained on original COCO
training set, Train All° is trained from only the ResNet-50 backbone on COCO-Periph training set
images.
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Figure 24: Faster R-CNN R50 Object Detection Bounding Box AP for Small Objects. We
fine-tune an R-CNN on TTM transform images and compare their AP small to the baseline model.
All models generally do poorly on smaller objects. Fine-tuning does not improve performance
on original COCO images, but it does slightly improve performance on small eccentricity COCO-
Periph images like 5 and 10°.
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Figure 25: Faster R-CNN R50 Object Detection Bounding Box AP for Large Objects. All
models generally do better at large objects than small objects, and fine-tuning on uniform transform
images improves large object performance on COCO-Periph images much more than small objects
at farther eccentricities.

A.9 ROBUSTNESS TO CORRUPTION IN FINE-TUNED & TRAINED FASTER R-CNN

Fine-tuning and training from scratch on uniform TTM transform images improves robustness to
some unseen geometric corruptions, but not contrast and noise-like corruptions (Figure 26)).
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Figure 26: Corruption Robustness of Fine-Tuned and Trained models. We report AP averaged
over all 5 severity levels for each corruption in COCO-C (Michaelis et all, [2019). BL refers to
the pre-trained Faster RCNN R50 model (blue). The FT model is one fine-tined on COCO-Periph
(orange). The TR model is trained from scratch on COCO-Periph (green).
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A.10 MAXIMUM PROBABILITY AS PREDICTION REDUCES PERFORMANCE
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Figure 27: Sum of Probabilities vs Maximum Probability Using the sum of the prediction proba-
bilities (opaque) as the prediction results in improved performance on the 2IFC task as compared to
using the maximum predicted probability (translucent). This holds for both the baseline, fine-tuned,
and trained RCNN models.
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